solution
Part i)
Compounding per annum
Rate "r=0.05"
Present value "PV = \\sum p_i(1+r)^{-i}"
"= \\frac{1000}{(1.05)^1} + \\frac{2000}{(1.05)^2} + \\frac{3000}{(1.05)^3}""+ \\frac{4000}{(1.05)^4} + \\frac{5000}{(1.05)^5} + \\frac{6000}{(1.05)^6}"
"= 17044.74"
answer: the present value is $ 17,044.74
Part ii)
Compounding quarterly
"PV = \\sum p_i(1+\\frac{r}{4})^{-i*4}"
"= \\frac{1000}{(1.0125)^4} + \\frac{2000}{(1.0125)^8} + \\frac{3000}{(1.0125)^{12}}""+ \\frac{4000}{(1.0125)^{16}} + \\frac{5000}{(1.0125)^{20}} + \\frac{6000}{(1.0125)^{24}}" "=26116.03"
answer: the present value is $ 26,116.03
Comments
Leave a comment