Question #138128

What is the effective annual yield of a $1000 par value bond that pays semi-annual coupons, has an annual coupon rate of 5% with a current trading price of $950 and a time to maturity of 10 years? What will happen to the value of the bond if the YTM falls by 1%? Will it trade at a discount, par or premium? (Round to the nearest percent).

                                                                   


1
Expert's answer
2020-10-15T03:04:39-0400

EAY=(1+YTM2)21EAY=(\frac{1+YTM}{2})^2-1


PV=Cm(1+YTM2)+Cm(1+YTM2)2+...+Cm(1+YTM2)n+N(1+YTM2)nPV=\frac{\frac{C}{m}}{(1+\frac{YTM}{2})}+\frac{\frac{C}{m}}{(1+\frac{YTM}{2})^2}+...+\frac{\frac{C}{m}}{(1+\frac{YTM}{2})^n}+\frac{N}{(1+\frac{YTM}{2})^n}


950=502(1+YTM2)+502(1+YTM2)2+...+502(1+YTM2)10+1000(1+YTM2)10950=\frac{\frac{50}{2}}{(1+\frac{YTM}{2})}+\frac{\frac{50}{2}}{(1+\frac{YTM}{2})^2}+...+\frac{\frac{50}{2}}{(1+\frac{YTM}{2})^{10}}+\frac{1000}{(1+\frac{YTM}{2})^{10}}

YTM=5.66 %

EAY=(1+0.05662)21=0.0574EAY=(\frac{1+0.0566}{2})^2-1=0.0574 5.74%


if it falls by one percent, then

PV=502(1+0.042)+502(1+0.042)2+...+502(1+0.042)10+1000(1+0.042)10=1045PV=\frac{\frac{50}{2}}{(1+\frac{0.04}{2})}+\frac{\frac{50}{2}}{(1+\frac{0.04}{2})^2}+...+\frac{\frac{50}{2}}{(1+\frac{0.04}{2})^{10}}+\frac{1000}{(1+\frac{0.04}{2})^{10}}=1045

Will it trade at a premium


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS