C=q^3+1.5q^2+9q......
Find AC .....
MC
AVC
AFC..?
AC=TCQAC = \frac{TC}{Q}AC=QTC
AC=q3+1.5q2+9qqAC = \frac{{q^{3}+1.5q^{2}+9q}}{q}AC=qq3+1.5q2+9q
AC=q2+1.5q+9AC = q^{2}+1.5q+9AC=q2+1.5q+9
MC=∫MC = \intopMC=∫ dTCdQ\frac{dTC}{dQ}dQdTC
MC=3q2+3q+9MC = 3q^2 + 3q + 9MC=3q2+3q+9
AVC=TVCQAVC = \frac{TVC}{Q}AVC=QTVC
In this case; AVC=ACAVC = ACAVC=AC because there is no fixed cost
AVC=q2+1.5q+9AVC=q 2 +1.5q+9AVC=q2+1.5q+9
AFC=TFCQAFC = \frac{TFC}{Q}AFC=QTFC
In this case; TFC=0;thusAFC=0TFC = 0; thus AFC = 0TFC=0;thusAFC=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments