3. The following data refers to the price of a good ‘P’ and the quantity of the good supplied, ‘S’.
P 2 7 5 1 4 8 2 8
S 15 41 32 9 28 43 17 40
a. Estimate the linear regression line
b. Estimate the standard errors of
c. Test the hypothesis that price influences supply
d. Obtain a 95% confidence interval for
The linear regression line is "S=\\alpha+\\beta P+E"
E is random error
and "E(s)=\\alpha+\\beta P"
"S_{SS}=\\sum S^2=\\displaystyle\\sum_{i=1}^8(S_i-S)^2=1205"
"S_{PP}=\\sum P^2= \\displaystyle\\sum_{i=1}^8(P_i-P)^2=55.9"
"S_{SP}=\\sum(SP)=\\displaystyle\\sum_{i=1}^8(S_i-S)(P_i-P)=22.4"
"\\alpha=S-P\\beta" and "\\beta=\\frac{(\\sum SP)}{(\\sum S^2)^{1\/2}\\times (\\sum P^2)^{1\/2}}" "=\\frac{(225.4)}{(1205)^{1\/2}\\times (55.9)^{1\/2}}=0.8685"
from the table "S=\\sum S_i\/n=225\/8=28.125"
"P=\\sum P_i\/n=37\/8=4.625"
"\\alpha=28.125-4.625\\times0.8685=24.1082"
a) the estimated regression line is, "S=24.1082+0.8685P_i"
b) the standard error (SE) of "\\alpha" and "\\beta" are
"SE(\\alpha)=\\sigma \\sqrt{1\/n+P^2\/S_{pp}}"
and "SE(\\alpha)=\\sigma\/\\sqrt{S_{pp}}"
"\\sigma^2=1\/(n-2)SSE=1\/(n-2)[S_{ss}-\\beta^2S_{pp}]=1\/(8-2)[1205-0.8685^2\\times 55.9]"
"=1\/6\\times1162.8351=193.8058"
"\\sigma=\\sqrt{193.8058}=13.9214"
"SE(\\alpha)=\\sigma \\sqrt{1\/n+P^2\/S_{pp}}=13.9214\/\\sqrt{55.9}=13.9214\/7.4766=1.86199"
c) testing for hypothesis
"H_0:\\beta=0 \\space versus \\space H_1:\\beta \\not= 0"
at "\\alpha=0.05"
"t=(\\beta-0)\/(SE(\\beta))"
"t=0.8685\/1.86199=0.4664"
"t_{critical}=2.4469"
"|t|\\lt2.4469"
we fail to reject "H_0" , that means at "\\alpha=0.05, P\\space doesn't\\space affect \\space S"
Comments
Leave a comment