Question #277746

given the production Q=L^1/2 K^1/2 price per unit of K and L is birr 2 and birr 4 respectively and total cost is birr 80 a) determine the maximum output subject to the cost constraint b)caculate the MRTSl,k at equilibrium point


1
Expert's answer
2021-12-10T11:25:21-0500

The optimal L and K will be at the point where

MRTS=MPLMPK=wrMRTS=\dfrac{MPL}{MPK}=\dfrac{w}{r}


Therefore

MPL=12L1/2K1/2MPK=12L1/2K1/2MPL=\dfrac{1}{2}L^{-1/2}K^{1/2}\\[0.4cm] MPK=\dfrac{1}{2}L^{1/2}K^{-1/2}\\[0.4cm]

If w=4 and r=2w=4 \text{ and } r=2 , then


12L1/2K1/212L1/2K1/2=42KL=2K=2L\dfrac{\frac{1}{2}L^{-1/2}K^{1/2}}{\frac{1}{2}L^{1/2}K^{-1/2}}=\dfrac{4}{2}\\[0.4cm] \dfrac{K}{L}=2\\[0.4cm] K=2L


The total cost is equal to

80=4L+2K80=4L+2K


Therefore

80=4L+2(2L)80=4L+4L80=8LL=1080=4L+2(2L)\\[0.4cm] 80=4L+4L\\[0.3cm] 80=8L\\[0.3cm] L^*=\boxed{10}

The optimal capital is equal to

K=2×10K=20K=2\times 10\\[0.3cm] K^*=\boxed{20}


At the optimal L and K, the MRTS is equal to


MRTS=105MRTS=2MRTS=\dfrac{10}{5}\\[0.3cm] MRTS=\boxed{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS