Question #233516

Consider the following production function.

TPL = 12L2 – 0.8L3

Determine the marginal product function(MPL)

Determine the average product function (APL)

Find the value of L that maximizes TPL

Find the value of L that maximizes APL

Find the value of L that maximizes MPL


1
Expert's answer
2021-09-07T09:45:38-0400

TPL=12L20.8L3i)  MPL=(TPL)(L)MPL=2×12L(21)3×0.8L31MPL=24L2.4L2ii)  APL=TPLLAPL=12L20.8L3LAPL=12L0.8L2TP_L=12L^2 -0.8L^3 \\ i) \; MP_L= \frac{∂(TP_L)}{∂(L)} \\ MP_L= 2 \times 12L^{(2-1)} – 3 \times 0.8L^{3-1} \\ MP_L = 24 L -2.4L^2 \\ ii) \; AP_L= \frac{TP_L}{L} \\ AP_L= \frac{12L^2 -0.8L^3}{L} \\ AP_L= 12L -0.8L^2

iii) Maximozation of TPLTP_L

Put (TPL)(L)=0\frac{∂(TP_L)}{∂(L)} = 0 for maximum value

24L2.4L2=0L(242.4L)=024=2.4LL=242.4=10  units24L-2.4L^2=0 \\ L(24-2.4L)=0 \\ 24=2.4L \\ L= \frac{24}{2.4}=10 \;units

iv) Put (APL)(L)=0\frac{∂(AP_L)}{∂(L)} =0 , for maximum value

APL=12L0.8L2(APL)(L)=121.6L121.6L=0L=121.6=7.5  unitsAP_L= 12L -0.8L^2 \\ \frac{∂(AP_L)}{∂(L)} = 12 -1.6L \\ 12-1.6L=0 \\ L=\frac{12}{1.6}= 7.5 \;units

v) Put (MPL)(L)=0\frac{∂(MP_L)}{∂(L)}=0 for maximum value

MPL=24L2.4L2(MPL)(L)=244.8L244.8L=0L=244.8=5  unitsMP_L=24L -2.4L^2 \\ \frac{∂(MP_L)}{∂(L)} = 24-4.8L \\ 24-4.8L=0 \\ L=\frac{24}{4.8}= 5 \;units


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS