Solution:
Formulate the profit function:
Profit = TR – TC
Total revenue = P "\\times" Q
Since cost is fixed at 100, maximizing profit is the same as maximizing profits.
So, the total revenue will be maximized subject to the total cost of 100.
L (Q1, Q2, λ) = P1Q1 + P2Q2 – λ (5Q1 + 10Q2 – 100)
Profit = ((50 – Q1 – Q2) Q1 + (100 – Q1 – 4Q2) Q2) – (5Q1 + 10Q2 – 100)
Profit = (50Q1 – Q12 – Q1Q2 + 100Q2 – Q1Q2 – 4Q2) – (5Q1 + 10Q2 – 100)
LQ1 = "\\frac{\\partial L} {\\partial Q1}" = 50 – 2Q1 – Q2 – Q2 - 5λ = 0
= 50 – 2Q1 – 2Q2 = 5λ ………..(1)
LQ2 = "\\frac{\\partial L} {\\partial Q2}" = -Q1 + 100 – Q1 – 8Q2 – 10λ = 0
= 100 – 2Q1 – 8Q2 - 10λ = 0 (divide by two)
= 50 – Q1 – 4Q2 - 5λ
= 50 – Q1 – 4Q2 = 5λ ………….(2)
Lλ = "\\frac{\\partial L} {\\partial \\lambda }" = 5Q1 + 10Q2 – 100 = 0
Equate equations 1 and 2:
50 – 2Q1 – 2Q2 = 50 – Q1 – 4Q2
-2Q1 + Q1 = -4Q2 + 2Q2
Q1 = 2Q2
Substitute in the total cost constraint to derive Q2:
TC = 5Q1 + 10Q2 – 100 = 0
5(2Q2) + 10Q2 – 100 = 0
20Q2 = 100
Q2 = 5
Q1 = 2Q2 = 2 "\\times" 5 = 10
Q1 = 10
P1 = 50 – Q1 – Q2 = 50 – 10 – 5 = 35
P2 = 100 – Q1 – 4Q2 = 100 – 10 – (4 "\\times"5) = 100 – 10 – 20 = 70
Profit = (P1Q1 + P2Q2) – TC
Profit = (35"\\times"10) + (70"\\times"5) – 100
Profit = 350 + 350 – 100 = 600
Profit = 600
If total costs rise to 101:
Profit = (P1Q1 + P2Q2) – TC
Profit = (35"\\times"10) + (70"\\times"5) – 101
Profit = 350 + 350 – 101 = 599
Profit = 599
Comments
Leave a comment