Q = 180 L K 0.8 L = 5 K = 10 Q=180\sqrt{L}K^{0.8}\\L=5\space K=10 Q = 180 L K 0.8 L = 5 K = 10
1.
M P L = d Q d L = 180 2 L K 0.8 = 90 L K 0.8 MPL=\frac{dQ}{dL}=\frac{180}{2\sqrt L}K^{0.8}=\frac{90}{\sqrt L}K^{0.8} MP L = d L d Q = 2 L 180 K 0.8 = L 90 K 0.8
M P K = d Q d K = 180 × 0.8 L K − 0.2 M P K = 144 L K − 0.2 MPK=\frac{dQ}{dK}=180\times0.8\sqrt{L}\space K^{-0.2}\\MPK=144\sqrt{L}K^{-0.2} MP K = d K d Q = 180 × 0.8 L K − 0.2 MP K = 144 L K − 0.2
2.
Q = 180 L K 0.8 Q=180\sqrt{L}K^{0.8} Q = 180 L K 0.8
A P L = Q L = 180 L K 0.8 L = 180 L K 0.8 \\APL=\frac{Q}{L}=\frac{180\sqrt{L}K^{0.8}}{L}=\frac{180}{\sqrt{L}}K^{0.8} A P L = L Q = L 180 L K 0.8 = L 180 K 0.8
A P L = 180 ( 10 ) 0.8 5 = 80.49845 ( 10 ) 0.8 \\APL=\frac{180(10)^{0.8}}{5}=80.49845(10)^{0.8} A P L = 5 180 ( 10 ) 0.8 = 80.49845 ( 10 ) 0.8
A P L = 507.9 \\APL=507.9 A P L = 507.9
A P K = Q K = 180 L K 0.8 K \\APK=\frac{Q}{K}=\frac{180\sqrt{L}K^{0.8}}{K} A P K = K Q = K 180 L K 0.8
A P K = 180 L K 0.2 = 180 5 1 0 0.2 = 402.49 1 0 0.2 \\APK=\frac{180\sqrt{L}}{K^{0.2}}=\frac{180\sqrt{5}}{10^{0.2}}=\frac{402.49}{10^{0.2}} A P K = K 0.2 180 L = 1 0 0.2 180 5 = 1 0 0.2 402.49
A P K = 402.49 1.5848932 = 253.9554 \\\\APK=\frac{402.49}{1.5848932}=253.9554 A P K = 1.5848932 402.49 = 253.9554
3.
Q ( K , L ) = 180 L K 0.8 Q(K,L)=180\sqrt{L}K^{0.8} Q ( K , L ) = 180 L K 0.8
Scaling both factors of production by t>t
Q ( t K , t L ) = 180 t L ( t K ) 0.8 Q(tK,tL)=180\sqrt{tL}(tK)^{0.8}\\ Q ( t K , t L ) = 180 t L ( t K ) 0.8
= 180 ( t ) 1 2 L ( t ) 0.8 ( K ) 0.8 = 180 L ( K ) 0.8 ( t ) 0.8 = 180 L ( K ) 0.8 ( t ) 0.5 + 0.8 = ( t ) 1.3 180 L ( K ) 0.8 =180(t)^{\frac{1}{2}}\sqrt{L}(t)^{0.8}(K)^{0.8}\\=180\sqrt{L}(K)^{0.8}(t)^{0.8}\\=180\sqrt{L}(K)^{0.8}(t)^{0.5+0.8}\\=(t)^{1.3}180\sqrt{L}(K)^{0.8} = 180 ( t ) 2 1 L ( t ) 0.8 ( K ) 0.8 = 180 L ( K ) 0.8 ( t ) 0.8 = 180 L ( K ) 0.8 ( t ) 0.5 + 0.8 = ( t ) 1.3 180 L ( K ) 0.8
Q ( t K , t L ) = Q ( K , L ) ( t ) 1.3 Q(tK,tL)=Q(K,L)(t)^{1.3} Q ( t K , t L ) = Q ( K , L ) ( t ) 1.3
( t ) 1.3 > ( t ) (t)^{1.3}>(t) ( t ) 1.3 > ( t ) implies increasing returns to scale
4.
M R T S = M P L M P K = 90 L ( K ) 0.8 × 1 144 L ( K ) − 0.2 MRTS=\frac{MPL}{MPK}=\frac{90}{\sqrt{L}}(K)^{0.8}\times\frac{1}{144\sqrt{L}(K)^{-0.2}} MRTS = MP K MP L = L 90 ( K ) 0.8 × 144 L ( K ) − 0.2 1
= 90 144 K 0.8 ( K ) 0.2 L =\frac{90}{144} \frac{K^{0.8}(K)^{0.2}}{L} = 144 90 L K 0.8 ( K ) 0.2
= 90 144 K L =\frac{90}{144}\frac{K}{L} = 144 90 L K
= 10 16 K L =\frac{10}{16}\frac{K}{L} = 16 10 L K
M R T S = 5 8 K L MRTS=\frac{5}{8}\frac{K}{L} MRTS = 8 5 L K
5.
Cross partial effects
M P L = 90 L ( K ) 0.8 MPL=\frac{90}{\sqrt{L}}(K)^{0.8} MP L = L 90 ( K ) 0.8
d M P L d K = 90 ( 0.8 ) L ( K ) − 0.2 = 72 ( K ) − 0.2 L > 0 \frac{dMPL}{dK}=90\frac{(0.8)}{\sqrt{L}}(K)^{-0.2}\\=\frac{72(K)^{-0.2}}{\sqrt{L}}>0 d K d MP L = 90 L ( 0.8 ) ( K ) − 0.2 = L 72 ( K ) − 0.2 > 0
M P K = 144 L ( K ) − 0.2 MPK=144\sqrt{L}(K)^{-0.2} MP K = 144 L ( K ) − 0.2
d M P K d L = 144 2 L ( K ) − 0.2 = 72 L ( K ) − 0.2 > 0 \frac{dMPK}{dL}=\frac{144}{2\sqrt{L}}(K)^{-0.2}=\frac{72}{\sqrt{L}}(K)^{-0.2}>0 d L d MP K = 2 L 144 ( K ) − 0.2 = L 72 ( K ) − 0.2 > 0
Comments