a) "\\bold{Answer}"
Output, "Q = 11 \\space units"
"\\bold {Solution}"
Perfectly competitive firms are price takers. Therefore,
AR = MR = 4 birr
Profit maximising level of output is found when MR = MC.
Now,
"MC = \\dfrac {d}{dQ} (TC)"
"= \\dfrac{d}{dQ}\\big(\\dfrac {1}{3}Q^3 - 5Q^2 + 50 \\big)"
"= Q^2 -10Q"
"\\therefore \\space Q^2 - 10Q = 4"
"=> Q^2 -10Q -4 = 0"
"Q = \\dfrac { -(-10) \\pm \\sqrt {(-10)^2-4(1)(-4)}}{2}"
"= \\dfrac {10 \\pm \\sqrt {116}}{2}"
"= \\dfrac {20.770329614}{2}"
"= 10.385164807"
"\\approx {11 \\space units}"
b) "\\bold {Answer}"
"\u03c0 = 155.33 \\space birr"
"\\bold {Solution}"
Q = 11
"TR = Q \u00d7 P"
"= 11 \\space units \u00d7 4 \\space birr"
"= 44 \\space birr"
"TC = \\dfrac {1}{3}(11)^3 -5(11)^2 +50"
"= \\dfrac {1331}{3} - 605 +50"
"= -111.3333333 \\space birr"
(The firm might have saved costs)
"\u03c0 = TR - TC"
"= 44 \\space birr - (-111.33333 \\space birr)"
"= 155.333333 \\space birr"
"\\approx 155.33 \\space birr"
c) "\\bold {Answer}"
"P = -18.75 \\space birr"
"\\bold {Solution}"
Shutdown condition is:
"AR \\geq Min( AVC)"
"TC = \\dfrac {1}{3} Q^3 - 5Q^2 +50"
"FC = 50 \\space birr"
"TVC = \\dfrac {1}{3}Q^3 -5Q^2"
"AVC = \\dfrac {\\dfrac {1}{3}Q^3 -5Q^2}{Q}"
"= \\dfrac {1}{3}Q^2 -5Q"
For minimum AVC:
"\\dfrac {d}{dQ}(AVC) = \\dfrac {d}{dQ} \\big(\\dfrac {1}{3}Q^2-5Q \\big)"
"= \\dfrac {2}{3}Q -5"
Now, "\\dfrac {2}{3} Q -5 = 0"
"=> 2Q - 15 = 0"
"=> 2Q = 15"
"=> Q = \\dfrac {15}{2}"
"Thus, \\space Q = 7.5 \\space units"
"\\therefore \\space AVC = \\dfrac {1}{3}(7.5)^2 -5(7.5)"
"= \\dfrac {56.25}{3} - 37.5"
"= 18.75 - 37.5"
"= -18.75 \\space birr"
Thus, the minimum acceptable price is -18.75 birr (assuming negative prices exist)
Comments
Leave a comment