Question #135869
A firm operates in a perfectly competitive market. The market price of its product is 4
birr and the total cost function is given by: TC= 1/3Q3-5Q2+50,
a. What level of output should the firm produce to maximize its profit?
b. Determine the level of profit at equilibrium.
c. What minimum price is required by the firm to stay in the market?
1
Expert's answer
2020-10-08T07:43:39-0400

a) Answer\bold{Answer}

Output, Q=11 unitsQ = 11 \space units


Solution\bold {Solution}

Perfectly competitive firms are price takers. Therefore,

AR = MR = 4 birr


Profit maximising level of output is found when MR = MC.

Now,

MC=ddQ(TC)MC = \dfrac {d}{dQ} (TC)


=ddQ(13Q35Q2+50)= \dfrac{d}{dQ}\big(\dfrac {1}{3}Q^3 - 5Q^2 + 50 \big)


=Q210Q= Q^2 -10Q


 Q210Q=4\therefore \space Q^2 - 10Q = 4

=>Q210Q4=0=> Q^2 -10Q -4 = 0


Q=(10)±(10)24(1)(4)2Q = \dfrac { -(-10) \pm \sqrt {(-10)^2-4(1)(-4)}}{2}


=10±1162= \dfrac {10 \pm \sqrt {116}}{2}


=20.7703296142= \dfrac {20.770329614}{2}


=10.385164807= 10.385164807


11 units\approx {11 \space units}


b) Answer\bold {Answer}

π=155.33 birrπ = 155.33 \space birr


Solution\bold {Solution}

Q = 11

TR=Q×PTR = Q × P

=11 units×4 birr= 11 \space units × 4 \space birr

=44 birr= 44 \space birr


TC=13(11)35(11)2+50TC = \dfrac {1}{3}(11)^3 -5(11)^2 +50


=13313605+50= \dfrac {1331}{3} - 605 +50


=111.3333333 birr= -111.3333333 \space birr

(The firm might have saved costs)


π=TRTCπ = TR - TC

=44 birr(111.33333 birr)= 44 \space birr - (-111.33333 \space birr)

=155.333333 birr= 155.333333 \space birr

155.33 birr\approx 155.33 \space birr

c) Answer\bold {Answer}

P=18.75 birrP = -18.75 \space birr


Solution\bold {Solution}

Shutdown condition is:

ARMin(AVC)AR \geq Min( AVC)

TC=13Q35Q2+50TC = \dfrac {1}{3} Q^3 - 5Q^2 +50

FC=50 birrFC = 50 \space birr

TVC=13Q35Q2TVC = \dfrac {1}{3}Q^3 -5Q^2


AVC=13Q35Q2QAVC = \dfrac {\dfrac {1}{3}Q^3 -5Q^2}{Q}

=13Q25Q= \dfrac {1}{3}Q^2 -5Q

For minimum AVC:

ddQ(AVC)=ddQ(13Q25Q)\dfrac {d}{dQ}(AVC) = \dfrac {d}{dQ} \big(\dfrac {1}{3}Q^2-5Q \big)

=23Q5= \dfrac {2}{3}Q -5

Now, 23Q5=0\dfrac {2}{3} Q -5 = 0

=>2Q15=0=> 2Q - 15 = 0

=>2Q=15=> 2Q = 15


=>Q=152=> Q = \dfrac {15}{2}


Thus, Q=7.5 unitsThus, \space Q = 7.5 \space units


 AVC=13(7.5)25(7.5)\therefore \space AVC = \dfrac {1}{3}(7.5)^2 -5(7.5)


=56.25337.5= \dfrac {56.25}{3} - 37.5


=18.7537.5= 18.75 - 37.5


=18.75 birr= -18.75 \space birr


Thus, the minimum acceptable price is -18.75 birr (assuming negative prices exist)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS