Question #135850
Given market demand Qd = 40 -3 P, and market supply P =1/2 Qs + 10
a. Find the market equilibrium price and quantity?
b. What would be the state of the market if market price was fixed at Birr 10 per unit?
c. Calculate and interpret price elasticity of demand at the equilibrium point.
1
Expert's answer
2020-10-05T13:23:09-0400

a)a) Step 11 : Rewrite the supply curve as function of price

P=P=  12\frac{1}{2} Qs+10Q_{s}+10

12\frac{1}{2} QsQ_{s} =P10=P-10 .........(( divide both sides by 12\frac{1}{2} ))

QsQ_{s}=2P20=2P-20 ......... (( supply function).....(1)(1)


Step 22 : Leave the demand function untouched


QdQ_{d}=403P=40-3P .........(( demand function)) .....(2)(2)


Step 33 : At equilibrium;

Quantity demanded= Quantity supplied i.e (( Qd=Q_{d} = QsQ_{s}))

403P=2P2040-3P=2P-20 (( substitute for QdQ_{d} and QsQ_{s} ))

3P2P=2040-3P-2P=-20-40 (( group like terms together))

5P=60-5P=-60

P=12P=12


Step 44 : Substitute P in either of the functions

QsQ_{s} =2P20=2P-20      \implies 22 ×\times1220=412-20=4

QdQ_{d} =403P=40-3P      \implies 40340-3×\times12=412 =4

Therefore,

QdQ_{d}==  QsQ_{s} == 44

Step 5: Answer

Equilibrium price (Pe)(P_{e})  =12=12

Equilibrium Quantity (Qe)(Q_{e}) =4=4


b)b) When the price is set at 1010 Birr per unit; then P=10P=10

Substitute P in both supply and demand functions

 Qs=2P20Q_{s}=2P-20     \implies  22 ×1020=0\times10-20=0

Qd=403P    Q_{d} =40-3P\implies403×10=40-3\times10= 1010

\therefore When price is set at P=10P=10 ; then quantity supplied drops from 44 units to (zero) units whereas quantity demanded increased from 44 units to 1010 units.


c)c) The price elasticity of demand at equilibrium point (( e)e) is the point elasticity at that point

ED=ΔQΔP×PQE_{D}=-\frac{\Delta Q}{\Delta P}\times\frac{P}{Q}

Substitute for values at the equilibrium point where P=12P=12 and Qs=4Q_{s}=4 to get the

Slope =ΔQΔP=412=13=-\frac{\Delta Q}{\Delta P}=-\frac{4}{12}=-\frac{1}{3}

Get the reciprocal of the slope and multiply it with equilibrium price and quantity to obtain ED.E_{D}.

Reciprocal (13)=3(-\frac{1}{3})=-3

ED=3×124=9E_{D}=-3\times\frac{12}{4}= -9

The price of elasticity of demand at equilibrium is less than 11 , meaning the quantity demanded is inelastic. Any change in price disproportionately affects the quantity demanded.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS