ANSWERS
D* = 240 units per month
Maximum profit (π) = P4,960 per month
SOLUTIONS
We are given "D = 780 - 10P \\space units"
"Fixed \\space costs (FC) = P800 \\space per \\space month"
"Variable \\space costs = P30 \\space per \\space unit"
The inverse monthly demand function is therefore given by:
"10P = 780 - D"
"P = \\dfrac {780}{10} - \\dfrac {D}{10}"
"P = 78 - 0.10D"
"Price (P) = Average \\space revenue (AR)"
"\\therefore AR = 78 - 0.10D"
Total revenue (TR) is given by:
"TR = AR \u00d7 D"
"= (78 - 0.10D) \u00d7 D"
"= 78D - 0.10D^2"
Total cost = Variable costs + Fixed costs
"TC = VC + FC"
"= (P30 \u00d7 D) + P800"
"= 800 + 30D"
Total profit is given by:
Total profit = Total revenue - Total costs
"\u03c0 = TR - TC" "\u03c0 = (78D - 0.10D^2) - (30D + 800)"
"= 78D - 30D - 0.10D^2 - 800"
"= -800 + 48D - 0.10D^2"
Maximum profit is approached through differential calculus
"\\dfrac {d\u03c0}{dD} = \\dfrac {d}{dD}(-800 + 48D - 0.10D^2)"
"= 48 - 0.20D"
"\\dfrac {d^2\u03c0}{dD^2}= \\dfrac {d^2}{dD^2}(48-0.20D)"
"= -0.20"
"Since \\space \\dfrac {d^2\u03c0}{dD^2} < 0" , profit(π) is maximum.
When profit (π) is maximum,
"\\dfrac {d\u03c0}{dD} = 0"
"=> 48 - 0.20D = 0"
"0.20D = 48"
"D = \\dfrac {48}{0.20}"
"= 240 \\space units"
"\\therefore D^* = 240 \\space units \\space per \\space month"
Calculating maximum profit (π)
"Max(\u03c0) = -800 + 48D^* - 0.10(D^*)^2"
"= -800 + 48(240) - 0.10(240^2)"
"= -800 + 11 520 - 5760"
"= P4,960"
"\\therefore Max(\u03c0) = P4,960 \\space per \\space month"
Comments
Leave a comment