ANSWERS
D* = 240 units per month
Maximum profit (π) = P4,960 per month
SOLUTIONS
We are given D=780−10P units
Fixed costs(FC)=P800 per month
Variable costs=P30 per unit
The inverse monthly demand function is therefore given by:
10P=780−D
P=10780−10D
P=78−0.10D
Price(P)=Average revenue(AR)
∴AR=78−0.10D
Total revenue (TR) is given by:
TR=AR×D
=(78−0.10D)×D
=78D−0.10D2
Total cost = Variable costs + Fixed costs
TC=VC+FC
=(P30×D)+P800
=800+30D
Total profit is given by:
Total profit = Total revenue - Total costs
π=TR−TC π=(78D−0.10D2)−(30D+800)
=78D−30D−0.10D2−800
=−800+48D−0.10D2
Maximum profit is approached through differential calculus
dDdπ=dDd(−800+48D−0.10D2)
=48−0.20D
dD2d2π=dD2d2(48−0.20D)
=−0.20
Since dD2d2π<0 , profit(π) is maximum.
When profit (π) is maximum,
dDdπ=0
=>48−0.20D=0
0.20D=48
D=0.2048
=240 units
∴D∗=240 units per month
Calculating maximum profit (π)
Max(π)=−800+48D∗−0.10(D∗)2
=−800+48(240)−0.10(2402)
=−800+11520−5760
=P4,960
∴Max(π)=P4,960 per month
Comments