Question #131962
A company has established that the relationship between sale price for one of its product and the quantity sold per month is approximately D = 780 -10p units (D is the demand or quantity sold per month, and p is the price in pesos). The fixed cost is P800 per month, and the variable cost is P30 per unit produced. What number of units, D*, should be produced per month and sold to maximize net profit? What is the maximum profit per month related to the product?
1
Expert's answer
2020-09-09T11:02:24-0400

ANSWERS


D* = 240 units per month


Maximum profit (π) = P4,960 per month


SOLUTIONS

We are given D=78010P unitsD = 780 - 10P \space units

Fixed costs(FC)=P800 per monthFixed \space costs (FC) = P800 \space per \space month

Variable costs=P30 per unitVariable \space costs = P30 \space per \space unit


The inverse monthly demand function is therefore given by:

10P=780D10P = 780 - D

P=78010D10P = \dfrac {780}{10} - \dfrac {D}{10}

P=780.10DP = 78 - 0.10D


Price(P)=Average revenue(AR)Price (P) = Average \space revenue (AR)

AR=780.10D\therefore AR = 78 - 0.10D


Total revenue (TR) is given by:

TR=AR×DTR = AR × D

=(780.10D)×D= (78 - 0.10D) × D

=78D0.10D2= 78D - 0.10D^2


Total cost = Variable costs + Fixed costs

TC=VC+FCTC = VC + FC

=(P30×D)+P800= (P30 × D) + P800

=800+30D= 800 + 30D


Total profit is given by:

Total profit = Total revenue - Total costs

π=TRTCπ = TR - TC π=(78D0.10D2)(30D+800)π = (78D - 0.10D^2) - (30D + 800)

=78D30D0.10D2800= 78D - 30D - 0.10D^2 - 800

=800+48D0.10D2= -800 + 48D - 0.10D^2


Maximum profit is approached through differential calculus

dπdD=ddD(800+48D0.10D2)\dfrac {dπ}{dD} = \dfrac {d}{dD}(-800 + 48D - 0.10D^2)

=480.20D= 48 - 0.20D



d2πdD2=d2dD2(480.20D)\dfrac {d^2π}{dD^2}= \dfrac {d^2}{dD^2}(48-0.20D)


=0.20= -0.20


Since d2πdD2<0Since \space \dfrac {d^2π}{dD^2} < 0 , profit(π) is maximum.


When profit (π) is maximum,

dπdD=0\dfrac {dπ}{dD} = 0


=>480.20D=0=> 48 - 0.20D = 0

0.20D=480.20D = 48

D=480.20D = \dfrac {48}{0.20}

=240 units= 240 \space units

D=240 units per month\therefore D^* = 240 \space units \space per \space month


Calculating maximum profit (π)

Max(π)=800+48D0.10(D)2Max(π) = -800 + 48D^* - 0.10(D^*)^2

=800+48(240)0.10(2402)= -800 + 48(240) - 0.10(240^2)

=800+115205760= -800 + 11 520 - 5760

=P4,960= P4,960


Max(π)=P4,960 per month\therefore Max(π) = P4,960 \space per \space month


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS