The vapor pressure of any liquid at its boiling point is 1 atm.
(a) for water, "P_1=1 atm,T_1=373 \\ K,T_2=63\\degree C=63+273=333\\ K"
"\\triangle H_{vap} =40.65KJ\/mol"
By using Clausius-Clayperon equation,
"ln\\frac{P_2}{P_1}=\\frac{\\triangle H_{vap}}{R}(\\frac{1}{T_1}-\\frac{1}{T_2})"
"ln\\frac{P_2}{1}=\\frac{40.65\\times 10^3}{8.314}(\\frac{1}{373}-\\frac{1}{333})"
"P_2=0.2071 \\ atm"
(b) for ethanol, "P_1=1atm,T_1(B.P.)=78.37 \\degree C=351.37 K," "T_2=23\\degree C=296 K"
"\\triangle H_{vap}=38.6 KJ\/mol"
By using Clausius-Clayperon equation,
"ln\\frac{P_2}{P_1}=\\frac{\\triangle H_{vap}}{R}(\\frac{1}{T_1}-\\frac{1}{T_2})"
"ln\\frac{P_2}{1}=\\frac{38.6\\times 10^3}{8.314}(\\frac{1}{351.37}-\\frac{1}{296})"
"P_2=0.84441 \\ atm"
(c) For chloroform,"P_1=1atm,T_1(B.P.)=61.2 \\degree C=334.2 K," "T_2=52\\degree C=325 K"
"\\triangle H_{vap}=31.4 KJ\/mol"
By using Clausius-Clayperon equation,
"ln\\frac{P_2}{P_1}=\\frac{\\triangle H_{vap}}{R}(\\frac{1}{T_1}-\\frac{1}{T_2})"
"ln\\frac{P_2}{1}=\\frac{31.4\\times 10^3}{8.314}(\\frac{1}{334.2}-\\frac{1}{325})"
"P_2=0.72622 \\ atm"
Comments
Leave a comment