Question #96749
Use the Clausius-Clapeyron equation to calculate the vapor pressure for the following samples. Assume the amount of each sample is 1 mole.
a. Water at 63 C.
b. Ethanol at 23 C.
c. Chloroform at 52 °C.
1
Expert's answer
2019-10-21T07:16:25-0400

The vapor pressure of any liquid at its boiling point is 1 atm.

(a) for water, P1=1atm,T1=373 K,T2=63°C=63+273=333 KP_1=1 atm,T_1=373 \ K,T_2=63\degree C=63+273=333\ K

Hvap=40.65KJ/mol\triangle H_{vap} =40.65KJ/mol

By using Clausius-Clayperon equation,

lnP2P1=HvapR(1T11T2)ln\frac{P_2}{P_1}=\frac{\triangle H_{vap}}{R}(\frac{1}{T_1}-\frac{1}{T_2})

lnP21=40.65×1038.314(13731333)ln\frac{P_2}{1}=\frac{40.65\times 10^3}{8.314}(\frac{1}{373}-\frac{1}{333})

P2=0.2071 atmP_2=0.2071 \ atm

(b) for ethanol, P1=1atm,T1(B.P.)=78.37°C=351.37K,P_1=1atm,T_1(B.P.)=78.37 \degree C=351.37 K, T2=23°C=296KT_2=23\degree C=296 K

Hvap=38.6KJ/mol\triangle H_{vap}=38.6 KJ/mol

By using Clausius-Clayperon equation,

lnP2P1=HvapR(1T11T2)ln\frac{P_2}{P_1}=\frac{\triangle H_{vap}}{R}(\frac{1}{T_1}-\frac{1}{T_2})

lnP21=38.6×1038.314(1351.371296)ln\frac{P_2}{1}=\frac{38.6\times 10^3}{8.314}(\frac{1}{351.37}-\frac{1}{296})

P2=0.84441 atmP_2=0.84441 \ atm

(c) For chloroform,P1=1atm,T1(B.P.)=61.2°C=334.2K,P_1=1atm,T_1(B.P.)=61.2 \degree C=334.2 K, T2=52°C=325KT_2=52\degree C=325 K

Hvap=31.4KJ/mol\triangle H_{vap}=31.4 KJ/mol

By using Clausius-Clayperon equation,

lnP2P1=HvapR(1T11T2)ln\frac{P_2}{P_1}=\frac{\triangle H_{vap}}{R}(\frac{1}{T_1}-\frac{1}{T_2})

lnP21=31.4×1038.314(1334.21325)ln\frac{P_2}{1}=\frac{31.4\times 10^3}{8.314}(\frac{1}{334.2}-\frac{1}{325})

P2=0.72622 atmP_2=0.72622 \ atm



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS