A 0.2025g sample consisting of only BaCl2 and KCl required 20.25ml of 0.1200M AgNO3 solution for the quantitative precipitation of chloride. Calculate the %Ba and %K in the sample
Solution:
let x = mass of KCl, y = mass of BaCl2
Thus: x + y = 0.2025 g; → x = 0.2025 - y
The molar mass of BaCl2Â is 208.23 g mol-1
The molar mass of KCl is 74.55 g mol-1
Moles of AgNO3 = Molarity of AgNO3 × Solution volume
Moles of AgNO3 = 0.1200 M × 0.02025 L = 0.00243 mol
Moles of AgNO3Â = 0.00243 mol
Balanced chemical equations:
KCl + AgNO3 → AgCl + KNO3
BaCl2 + 2AgNO3 → 2AgCl + Ba(NO3)2
According to these equations above:
Moles AgNO3 from KCl = (x g KCl × 1 mol AgNO3) / (74.55 g mol-1 KCl) = 0.01341x mol AgNO3
Moles AgNO3 from BaCl2 = (y g BaCl2 × 2 mol AgNO3) / (208.23 g mol-1 BaCl2l) = 0.00960y mol AgNO3
0.01341x + 0.00960y = 0.00243
0.01341 × (0.2025 - y) + 0.00960y = 0.00243
0.002716 - 0.01341y + 0.00960y = 0.00243
-0.0038y = -0.00027
y = 0.07506 g - mass of BaCl2
x = 0.2025 - y = 0.2025 - 0.07506 = 0.12744
x = 0.12744 g - mass of KCl
Moles of BaCl2Â = Mass of BaCl2Â / Molar mass of BaCl2
Moles of of BaCl2Â = 0.07506 g / 208.23 g mol-1Â = 0.0003605 mol BaCl2
BaCl2 → Ba2+ + 2Cl-
Hence,
Moles of Ba2+Â = Moles of BaCl2Â = 0.0003605 mol
Mass of Ba2+ = Moles of Ba2+ × Molar mass of Ba2+
The molar mass of Ba is 137.33 g mol-1
Hence,
Mass of Ba2+ = 0.0003605 mol × 137.33 g mol-1 = 0.04951 g
%Ba = (0.04951 g / 0.2025 g) × 100% = 24.45%
%Ba = 24.45%
Moles of KCl = Mass of KCl / Molar mass of KCl
Moles of of KCl = 0.12744 g / 74.55 g mol-1Â = 0.001709 mol KCl
KCl → K+ + Cl-
Hence,
Moles of K+Â = Moles of KCl = 0.001709 mol
Mass of K+ = Moles of K+ × Molar mass of K+
The molar mass of K is 39.098 g mol-1
Hence,
Mass of K+ = 0.001709 mo × 39.098 g mol-1 = 0.06682 g
%K = (0.06682 g / 0.2025 g) × 100% = 32.99% = 33.00%
%K = 33.00%
Answer:
%Ba = 24.45%;
%K = 33.00%.
Comments
Leave a comment