Let's write the expressions for the equilibrium constants.
H2(g) + I2(g) ↔ 2HI(g), Kp1 = 54.0
"K_{p1} = \\frac{p_{HI}^2}{p_{H_2}p_{I_2}}"
N2(g) + 3H2(g) ↔ 2NH3(g), Kp2 = 1.04 x 10-4
"K_{p2} = \\frac{p_{NH_3}^2}{p_{N_2}p_{H_2}^3}"
For 2NH3(g) + 3I2(g) ↔ 6HI(g) + N2(g):
"K_{p3} = \\frac{p_{HI}^6p_{N_2}}{p_{NH_3}^2p_{I_2}^3} = \\left(\\frac{p_{HI}^2}{p_{H_2}p_{I_2}}\\right)^3\u00b7\\left( \\frac{p_{NH_3}^2}{p_{N_2}p_{H_2}^3}\\right)^{-1}"
"K_{p3} = (K_{p1})^3\u00b7(K_{p2})^{-1} = \\frac{54.0^3}{1.04\u00b710^{-4}} = 1.51\u00b710^9"
Answer: the value of Kp for 2NH3(g) + 3I2(g) ↔ 6HI(g) + N2(g) is 1.51·109.
Comments
Leave a comment