Question #120315
Calculate the mass of neon gas in a neon sign with a volume of 50.0 L at 10.0°C and 3.1 kPa
1
Expert's answer
2020-06-05T05:53:51-0400

According to the ideal gas law, the number of the moles nn of a gas relates to its volume VV, absolute temperature TT and pressure pp as:

pV=nRTpV = nRT ,

where RR is the ideal gas constant , equal to 8.314 J mol-1 K-1.

The mass can be calculated from the number of the moles, using the molar mass of neon M=20.18M=20.18 g/mol:

m=nMm = n·M .

Therefore, the mass of neon gas is:

m=pVRTMm = \frac{pV}{RT}·M

m=3.1103(Pa)50103(m3)8.314(J/(mol K))(10.0+273.15)K20.18 g/molm = \frac{3.1·10^3(\text{Pa})·50·10^{-3}(\text{m}^3)}{8.314(\text{J/(mol K)})·(10.0+273.15)\text{K}}·20.18\text{ g/mol}

m=1.33m = 1.33 g.

Note: don't forget to convert the temperature in °C to the temperature in K, adding 273.15 to the value in °C.

Answer: the mass of the neon gas is 1.33 g.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS