Solution (7):
M(CuSO4·5H2O) = Ar(Cu) + Ar(S) + 9*Ar(O) + 10*Ar(H);
M(CuSO4·5H2O) = 63.546 + 32.076 + 9*15.9998 + 10*1.008 = 249.7 (g/mol).
M(CuSO4) = Ar(Cu) + Ar(S) + 4*Ar(O) = 63.546 + 32.076 + 4*15.9998 = 159.62 (g/mol).
Let's find the percentage of copper(II) sulfate in CuSO4·5H2O:
w(CuSO4) = M(CuSO4) / M(CuSO4·5H2O) = (159.62) / (249.7) = 0.639247.
Then,
mass of copper(II) sulfate = m(CuSO4) = w(CuSO4) * m(CuSO4·5H2O);
m(CuSO4) = 0.639247 * 57 = 36.44 g
m(CuSO4) = 36.44 g.
Answer (7): 36.44 g of copper(II) sulfate (CuSO4) would remain.
Solution (12):
Chemical reaction scheme:
AuCl3 · 2H2O --> Au
M(AuCl3 · 2H2O) = Ar(Au) + 3*Ar(Cl) + 4*Ar(H) + 2*Ar(O);
M(AuCl3 · 2H2O) = 196.9666 + 3*35.457 + 4*1.008 + 2*15.9998 = 339.3692 (g/mol).
M(Au) = 196.9666 (g/mol).
Let's find the percentage of gold (Au) in AuCl3·2H2O:
w(Au) = M(Au) / M(AuCl3·2H2O) = (196.9666) / (339.3692) = 0.58039.
Then,
mass of gold = m(Au) = w(Au) * m(AuCl3·2H2O);
m(Au) = 0.58039 * 49.06 = 28.4739 = 28.47 g
m(Au) = 28.47 g.
Answer (12): 28.47 g of gold (Au) could be obtained.
Comments
Leave a comment