Solution:
m(NH4Cl) = 0.7387 g;
n(NH4Cl) = m(NH4Cl) / M(NH4Cl) = (0.7387 g) / (53.4915 g/mol) = 0.0138 mol;
c(NH4Cl) = n(NH4Cl) / V(NH4Cl) = (0.0138 mol) / (1.00 L) = 0.0138 mol / L = 0.0138 M.
c(NH4+) = 0.0138 M
c(NH3) = 0.2098 M
NH3 is a weak base: NH3 + H2O = NH4+ + OH-;
NH4Cl is a salt: NH4Cl → NH4+ + Cl-;
thus NH4+ is a "common ion":
NH3 + H2O = NH4+ + OH-
Let's use an ICE (Initial, Change, Equilibrium) table:
The equlibrium constant (Kb) is expressed as:
Kb = [OH-] * [NH4+] / [NH3];
Kb = [x] * [0.0138 + x] / [0.2098 - x].
Approximation: ignore -x, +x terms:
Kb = [x] * [0.0138] / [0.2098] = 0.0138x / 0.2098 = 0.06578x.
0.06578x = Kb = 1.8*10-5;
x = (1.8*10-5) / 0.06578 = 0.00027365 = 2.7365*10-4;
x= [OH-] = 2.7365*10-4.
pH = 14 - pOH;
pH = 14 - (-log[OH-]) = 14 - (log[2.7365*10-4]) = 14 - (3.56) = 10.44
pH = 10.44.
Answer: pH = 10.44
Comments
Leave a comment