Question #99848
A sealed container was filled with 0.300 mol H2(g), 0.400 mol I2(g), and 0.200 mol HI(g) at 870 K and total pressure 1.00 bar. Calculate the amounts of the components in the mixture at equilibrium given that K = 870 for the reaction H2(g) + I2(g) equilibrium reaction arrow 2 HI(g).
1
Expert's answer
2019-12-05T08:19:31-0500

Solution.

p×V=n×R×Tp \times V = n \times R \times T

V=n×R×TpV = \frac{n \times R \times T}{p}

V = 65.06 L

C(I2)=0.0062 MC(I2) = 0.0062 \ M

C(H2)=0.0046 MC(H2) = 0.0046 \ M

C(HI)=0.0031 MC(HI) = 0.0031 \ M

Kp=Kc×(R×T)(Δν)Kp = Kc \times (R \times T)^{(- \Delta \nu)}

For this reaction Δν=0and Kp=KcFor \ this \ reaction \ \Delta \nu = 0 and \ Kp = Kc

Kp=[HI]2eq]H2]eq×[I2]eqKp = \frac{[HI]^2eq}{]H2]eq \times [I2]eq}

870=(0.0031+x)2(0.0046x)×(0.0062x)870 = \frac{(0.0031+x)^2}{(0.0046-x) \times (0.0062-x)}

x = 0.0045

[HI]=(0.0031+2×0.0045)×65.06=0.79 mol[HI] = (0.0031+2\times 0.0045) \times 65.06 = 0.79 \ mol

[I2]=(0.00620.0045)×65.06=0.11 mol[I2] = (0.0062-0.0045) \times 65.06 = 0.11 \ mol

[H2]=(0.00460.0045)×65.06=0.0065 mol[H2] = (0.0046-0.0045) \times 65.06 = 0.0065 \ mol

Answer:

[HI]=0.79 mol[HI] = 0.79 \ mol

[I2]=0.11 mol[I2] = 0.11 \ mol

[H2]=0.0065 mol[H2] = 0.0065 \ mol


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS