Question #97026
Calculate the entropy of mixing of 2 moles of H₂ and 3 moles of O₂ assuming that no chemical reaction occurs.
1
Expert's answer
2019-10-29T06:44:24-0400

Let's start with the entropy of the ideal gas (note, I shall use the system where k=1k = 1 so the temperature is measured in the energy units)


S=NlneVNNf(T)S = N\ln \frac{{eV}}{N} - Nf'(T)

where f(T)f(T) is some function of the temperature (explicitely say f(T)=Tln[(mT2π2)3/2keεkT]f(T) = - T\ln [{(\frac{{mT}}{{2\pi {\hbar ^2}}})^{3/2}}\sum\limits_k {{e^{ - \frac{{{\varepsilon _k}}}{T}}}} ] , but we don't need it).

Then the entropy before mixing is the sum of the entopies of the two gases


Sbefore=NH2lneVH2NH2NH2fH2(T)+NO2lneVO2NO2NO2fO2(T){S_{{\text{before}}}} = {N_{{H_2}}}\ln \frac{{e{V_{{H_2}}}}}{{{N_{{H_2}}}}} - {N_{{H_2}}}{f_{{H_2}}}'(T) + {N_{{O_2}}}\ln \frac{{e{V_{{O_2}}}}}{{{N_{{O_2}}}}} - {N_{{O_2}}}{f_{{O_2}}}'(T)

The entropy before mixing again can be considered as the enropy of the two independent gases that but in volume VH2+VO2{V_{{H_2}}} + {V_{{O_2}}}


Safter=NH2lne(VH2+VO2)NH2NH2fH2(T)+NO2lne(VH2+VO2)NO2NO2fO2(T){S_{{\text{after}}}} = {N_{{H_2}}}\ln \frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{H_2}}}}} - {N_{{H_2}}}{f_{{H_2}}}'(T) + {N_{{O_2}}}\ln \frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{O_2}}}}} - {N_{{O_2}}}{f_{{O_2}}}'(T)

Then ΔS=SafterSbefore\Delta S = {S_{{\text{after}}}} - {S_{{\text{before}}}}


ΔS=NH2lne(VH2+VO2)NH2NH2lneVH2NH2+NO2lne(VH2+VO2)NO2NO2lneVO2NO2\Delta S = {N_{{H_2}}}\ln \frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{H_2}}}}} - {N_{{H_2}}}\ln \frac{{e{V_{{H_2}}}}}{{{N_{{H_2}}}}} + {N_{{O_2}}}\ln \frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{O_2}}}}} - {N_{{O_2}}}\ln \frac{{e{V_{{O_2}}}}}{{{N_{{O_2}}}}}

Using the properties of the logarithms


ΔS=NH2lnVH2+VO2VH2+NO2lnVH2+VO2VO2\Delta S = {N_{{H_2}}}\ln \frac{{{V_{{H_2}}} + {V_{{O_2}}}}}{{{V_{{H_2}}}}} + {N_{{O_2}}}\ln \frac{{{V_{{H_2}}} + {V_{{O_2}}}}}{{{V_{{O_2}}}}}

Now using the equation of the state pV=NTpV = NT


ΔS=NH2lnNH2+NO2NH2+NO2lnNH2+NO2NO2\Delta S = {N_{{H_2}}}\ln \frac{{{N_{{H_2}}} + {N_{{O_2}}}}}{{{N_{{H_2}}}}} + {N_{{O_2}}}\ln \frac{{{N_{{H_2}}} + {N_{{O_2}}}}}{{{N_{{O_2}}}}}

Using that N=νNAN = \nu {N_A}


ΔS=NA[νH2lnνH2+νO2νH2+νO2lnνH2+νO2νO2]\Delta S = {N_A}[{\nu _{{H_2}}}\ln \frac{{{\nu _{{H_2}}} + {\nu _{{O_2}}}}}{{{\nu _{{H_2}}}}} + {\nu _{{O_2}}}\ln \frac{{{\nu _{{H_2}}} + {\nu _{{O_2}}}}}{{{\nu _{{O_2}}}}}]

If you want to obtain the result in [JK][\frac{{\text{J}}}{{\text{K}}}] you need to multiply in by the Boltzmann constant, kk and we can use that NAk=R{N_A}k = R - universal gas constant. Thus in classical units


ΔS=R[νH2lnνH2+νO2νH2+νO2lnνH2+νO2νO2]\Delta S = R[{\nu _{{H_2}}}\ln \frac{{{\nu _{{H_2}}} + {\nu _{{O_2}}}}}{{{\nu _{{H_2}}}}} + {\nu _{{O_2}}}\ln \frac{{{\nu _{{H_2}}} + {\nu _{{O_2}}}}}{{{\nu _{{O_2}}}}}]

ΔS8.31[JKmol](2[mol]ln2+32+3[mol]ln2+33)[JK]27.96[JK]\Delta S \approx 8.31[\frac{{\text{J}}}{{{\text{K}} \cdot {\text{mol}}}}] \cdot (2[{\text{mol}}] \cdot \ln \frac{{2 + 3}}{2} + 3[{\text{mol}}] \cdot \ln \frac{{2 + 3}}{3})[\frac{{\text{J}}}{{\text{K}}}] \approx 27.96[\frac{{\text{J}}}{{\text{K}}}]




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS