Let's start with the entropy of the ideal gas (note, I shall use the system where k=1 so the temperature is measured in the energy units)
S=NlnNeV−Nf′(T) where f(T) is some function of the temperature (explicitely say f(T)=−Tln[(2πℏ2mT)3/2k∑e−Tεk] , but we don't need it).
Then the entropy before mixing is the sum of the entopies of the two gases
Sbefore=NH2lnNH2eVH2−NH2fH2′(T)+NO2lnNO2eVO2−NO2fO2′(T) The entropy before mixing again can be considered as the enropy of the two independent gases that but in volume VH2+VO2
Safter=NH2lnNH2e(VH2+VO2)−NH2fH2′(T)+NO2lnNO2e(VH2+VO2)−NO2fO2′(T) Then ΔS=Safter−Sbefore
ΔS=NH2lnNH2e(VH2+VO2)−NH2lnNH2eVH2+NO2lnNO2e(VH2+VO2)−NO2lnNO2eVO2 Using the properties of the logarithms
ΔS=NH2lnVH2VH2+VO2+NO2lnVO2VH2+VO2 Now using the equation of the state pV=NT
ΔS=NH2lnNH2NH2+NO2+NO2lnNO2NH2+NO2Using that N=νNA
ΔS=NA[νH2lnνH2νH2+νO2+νO2lnνO2νH2+νO2]If you want to obtain the result in [KJ] you need to multiply in by the Boltzmann constant, k and we can use that NAk=R - universal gas constant. Thus in classical units
ΔS=R[νH2lnνH2νH2+νO2+νO2lnνO2νH2+νO2]
ΔS≈8.31[K⋅molJ]⋅(2[mol]⋅ln22+3+3[mol]⋅ln32+3)[KJ]≈27.96[KJ]
Comments