Let's start with the entropy of the ideal gas (note, I shall use the system where "k = 1" so the temperature is measured in the energy units)
"S = N\\ln \\frac{{eV}}{N} - Nf'(T)" where "f(T)" is some function of the temperature (explicitely say "f(T) = - T\\ln [{(\\frac{{mT}}{{2\\pi {\\hbar ^2}}})^{3\/2}}\\sum\\limits_k {{e^{ - \\frac{{{\\varepsilon _k}}}{T}}}} ]" , but we don't need it).
Then the entropy before mixing is the sum of the entopies of the two gases
"{S_{{\\text{before}}}} = {N_{{H_2}}}\\ln \\frac{{e{V_{{H_2}}}}}{{{N_{{H_2}}}}} - {N_{{H_2}}}{f_{{H_2}}}'(T) + {N_{{O_2}}}\\ln \\frac{{e{V_{{O_2}}}}}{{{N_{{O_2}}}}} - {N_{{O_2}}}{f_{{O_2}}}'(T)" The entropy before mixing again can be considered as the enropy of the two independent gases that but in volume "{V_{{H_2}}} + {V_{{O_2}}}"
"{S_{{\\text{after}}}} = {N_{{H_2}}}\\ln \\frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{H_2}}}}} - {N_{{H_2}}}{f_{{H_2}}}'(T) + {N_{{O_2}}}\\ln \\frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{O_2}}}}} - {N_{{O_2}}}{f_{{O_2}}}'(T)" Then "\\Delta S = {S_{{\\text{after}}}} - {S_{{\\text{before}}}}"
"\\Delta S = {N_{{H_2}}}\\ln \\frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{H_2}}}}} - {N_{{H_2}}}\\ln \\frac{{e{V_{{H_2}}}}}{{{N_{{H_2}}}}} + {N_{{O_2}}}\\ln \\frac{{e({V_{{H_2}}} + {V_{{O_2}}})}}{{{N_{{O_2}}}}} - {N_{{O_2}}}\\ln \\frac{{e{V_{{O_2}}}}}{{{N_{{O_2}}}}}" Using the properties of the logarithms
"\\Delta S = {N_{{H_2}}}\\ln \\frac{{{V_{{H_2}}} + {V_{{O_2}}}}}{{{V_{{H_2}}}}} + {N_{{O_2}}}\\ln \\frac{{{V_{{H_2}}} + {V_{{O_2}}}}}{{{V_{{O_2}}}}}" Now using the equation of the state "pV = NT"
"\\Delta S = {N_{{H_2}}}\\ln \\frac{{{N_{{H_2}}} + {N_{{O_2}}}}}{{{N_{{H_2}}}}} + {N_{{O_2}}}\\ln \\frac{{{N_{{H_2}}} + {N_{{O_2}}}}}{{{N_{{O_2}}}}}"Using that "N = \\nu {N_A}"
"\\Delta S = {N_A}[{\\nu _{{H_2}}}\\ln \\frac{{{\\nu _{{H_2}}} + {\\nu _{{O_2}}}}}{{{\\nu _{{H_2}}}}} + {\\nu _{{O_2}}}\\ln \\frac{{{\\nu _{{H_2}}} + {\\nu _{{O_2}}}}}{{{\\nu _{{O_2}}}}}]"If you want to obtain the result in "[\\frac{{\\text{J}}}{{\\text{K}}}]" you need to multiply in by the Boltzmann constant, "k" and we can use that "{N_A}k = R" - universal gas constant. Thus in classical units
"\\Delta S = R[{\\nu _{{H_2}}}\\ln \\frac{{{\\nu _{{H_2}}} + {\\nu _{{O_2}}}}}{{{\\nu _{{H_2}}}}} + {\\nu _{{O_2}}}\\ln \\frac{{{\\nu _{{H_2}}} + {\\nu _{{O_2}}}}}{{{\\nu _{{O_2}}}}}]"
"\\Delta S \\approx 8.31[\\frac{{\\text{J}}}{{{\\text{K}} \\cdot {\\text{mol}}}}] \\cdot (2[{\\text{mol}}] \\cdot \\ln \\frac{{2 + 3}}{2} + 3[{\\text{mol}}] \\cdot \\ln \\frac{{2 + 3}}{3})[\\frac{{\\text{J}}}{{\\text{K}}}] \\approx 27.96[\\frac{{\\text{J}}}{{\\text{K}}}]"
Comments
Leave a comment