Let's write down the equation of chemical reaction (unbalanced)
"Fe + C{l_2} \\to FeC{l_3}"and balance it (balance "Cl" at first, then "Fe")
"2Fe + 3C{l_2} \\to 2FeC{l_3}" Now we can see that for each "1" mole of "C{l_2}" we get "\\frac{2}{3}" moles of "FeC{l_3}" (we divide equation by 3)
So, the number of moles of "2FeC{l_3}" will be
"{\\nu _{FeC{l_3}}} = \\frac{2}{3}{\\nu _{C{l_2}}}" Molar mass of "C{l_2}" (atomic weight can be found in the periodic table)
"{M_{C{l_2}}} = 2 \\cdot 35.45[\\frac{{\\text{g}}}{{{\\text{mol}}}}] \\approx 70.9[\\frac{{\\text{g}}}{{{\\text{mol}}}}]"
and "{FeC{l_3}}"
"{M_{FeC{l_3}}} = 55.85[\\frac{{\\text{g}}}{{{\\text{mol}}}}] + 3 \\cdot 35.45[\\frac{{\\text{g}}}{{{\\text{mol}}}}] \\approx 162.2[\\frac{{\\text{g}}}{{{\\text{mol}}}}]"And we can use "\\nu = \\frac{m}{M}" , thus
"{m_{FeC{l_3}}} = \\frac{2}{3}{m_{C{l_2}}}\\frac{{{M_{FeC{l_3}}}}}{{{M_{C{l_2}}}}}" Let's do the calculations
"{m_{FeC{l_3}}} = \\frac{2}{3}515[{\\text{g}}]\\frac{{162.2[\\frac{{\\text{g}}}{{{\\text{mol}}}}]}}{{70.9[\\frac{{\\text{g}}}{{{\\text{mol}}}}]}} \\approx 785.45[{\\text{g}}]"
Comments
Leave a comment