Question #96079
Iron metal reacts with chlorine gas. How many grams of FeCl3 are obtained when 515g Cl2 reacts with excess Fe.
1
Expert's answer
2019-10-08T07:41:05-0400

Let's write down the equation of chemical reaction (unbalanced)


Fe+Cl2FeCl3Fe + C{l_2} \to FeC{l_3}

and balance it (balance ClCl at first, then FeFe)


2Fe+3Cl22FeCl32Fe + 3C{l_2} \to 2FeC{l_3}

Now we can see that for each 11 mole of Cl2C{l_2} we get 23\frac{2}{3} moles of FeCl3FeC{l_3} (we divide equation by 3)

So, the number of moles of 2FeCl32FeC{l_3} will be

νFeCl3=23νCl2{\nu _{FeC{l_3}}} = \frac{2}{3}{\nu _{C{l_2}}}

Molar mass of Cl2C{l_2} (atomic weight can be found in the periodic table)


MCl2=235.45[gmol]70.9[gmol]{M_{C{l_2}}} = 2 \cdot 35.45[\frac{{\text{g}}}{{{\text{mol}}}}] \approx 70.9[\frac{{\text{g}}}{{{\text{mol}}}}]


and FeCl3{FeC{l_3}}


MFeCl3=55.85[gmol]+335.45[gmol]162.2[gmol]{M_{FeC{l_3}}} = 55.85[\frac{{\text{g}}}{{{\text{mol}}}}] + 3 \cdot 35.45[\frac{{\text{g}}}{{{\text{mol}}}}] \approx 162.2[\frac{{\text{g}}}{{{\text{mol}}}}]

And we can use ν=mM\nu = \frac{m}{M} , thus


mFeCl3=23mCl2MFeCl3MCl2{m_{FeC{l_3}}} = \frac{2}{3}{m_{C{l_2}}}\frac{{{M_{FeC{l_3}}}}}{{{M_{C{l_2}}}}}

Let's do the calculations


mFeCl3=23515[g]162.2[gmol]70.9[gmol]785.45[g]{m_{FeC{l_3}}} = \frac{2}{3}515[{\text{g}}]\frac{{162.2[\frac{{\text{g}}}{{{\text{mol}}}}]}}{{70.9[\frac{{\text{g}}}{{{\text{mol}}}}]}} \approx 785.45[{\text{g}}]

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS