Answer to Question #94264 in Physical Chemistry for Abhishek

Question #94264
starting from the definition of Helmholtz free energy (A) derive relations for its variation with
(1) temperature at a constant volume and

(2) volume at a constant temperature.
1
Expert's answer
2019-09-16T03:53:27-0400

Helmholz free energy is given by:

A=HTSwhere U=internal energyT=tempratureS=entropyA=helmholz free energyA=H-TS\\where\ \\U=internal\ energy\\T=temprature\\S=entropy\\A=helmholz\ free\ energy


Or,       dA=dUd(TS)       dA=TdSPdV(TdS+SdT)Or,\\\ \ \ \ \ \ \ dA=dU-d(TS)\\\ \ \ \ \ \ \ dA=TdS-PdV-(TdS+SdT)

       dA=PdVSdT       .....    (a)\ \ \ \ \ \ \ dA=-PdV-SdT\ \ \ \ \ \ \ .....\ \ \ \ (a)\\


(2) At constant temprature:SdT=0So, dA=PdV  (1) At constant volume: PdV=0So, dA=SdT(2)\ At\ constant\ temprature:SdT=0\\So,\ dA=-PdV\ \ \\\\(1)\ At\ constant\ volume:\ PdV=0\\So,\ dA=-SdT




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment