Ecell=E0cell+0.0592lgaCd2+aFe2+E_{cell}=E_{0cell}+\frac{0.059}{2}lg\frac{a_{Cd^{2+}}}{a_{Fe^{2+}}}Ecell=E0cell+20.059lgaFe2+aCd2+
aCd+2=aFe+2⋅102⋅(Ecell−E0cell)0.059=0.1⋅102⋅(−0.02−0.04)0.059=9.2⋅10−4Ma_{Cd^{+2}}=a_{Fe^{+2}}·10^{\frac{2·(E_{cell}-E_{0cell})}{0.059}}=0.1·10^{\frac{2·(-0.02-0.04)}{0.059}}=9.2·10^{-4}MaCd+2=aFe+2⋅100.0592⋅(Ecell−E0cell)=0.1⋅100.0592⋅(−0.02−0.04)=9.2⋅10−4M
Answer 9.2⋅10−4M9.2·10^{-4}M9.2⋅10−4M
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments