Question #90141
HCl molecule shows an absorption at 2886 cm^-1. Determine its force constant and maximum displacements (change in inter nuclear distance) for v=0,1,2,3
1
Expert's answer
2019-05-27T06:09:24-0400

Solution.

μ=m(H)×m(Cl)m(H)+m(Cl)\mu = \frac{m(H) \times m(Cl)}{m(H) + m(Cl)}

μ=1×35.51+35.5\mu = \frac{1 \times 35.5}{1 + 35.5}

μ=0.97a.m.u.\mu = 0.97 a.m.u.

μ=0.97×1.661027\mu = 0.97 \times 1.66*10^{-27}

μ=1.611027kg\mu = 1.61*10^{-27} kg

K=μ×(2×π×cλ)2K = \mu \times (\frac{2 \times \pi \times c}{\lambda})^2

λ=12886107=3465nm\lambda = \frac{1}{2886} * 10^{-7} = 3465 nm

K=1.611027(23.1431083465109)2K = 1.61*10^{-27} * (\frac{2*3.14*3*10^8}{3465*10^{-9}})^2

K=475.97K = 475.97

E=hcλE=\frac{h*c}{\lambda}

J=h2ΔEJ = \frac{h^2}{\Delta E}

J=1.211048J = 1.21*10^{-48}

d=(Jμ)d = \sqrt{(\frac{J}{\mu})}

d=2.741011d = 2.74*10^{-11}

Answer:

K = 475.97 N/m

d = 2.74*10^(-11) m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS