2019-05-23T11:20:43-04:00
HCl molecule shows an absorption at 2886 cm^-1. Determine its force constant and maximum displacements (change in inter nuclear distance) for v=0,1,2,3
1
2019-05-27T06:09:24-0400
Solution.
μ = m ( H ) × m ( C l ) m ( H ) + m ( C l ) \mu = \frac{m(H) \times m(Cl)}{m(H) + m(Cl)} μ = m ( H ) + m ( Cl ) m ( H ) × m ( Cl )
μ = 1 × 35.5 1 + 35.5 \mu = \frac{1 \times 35.5}{1 + 35.5} μ = 1 + 35.5 1 × 35.5
μ = 0.97 a . m . u . \mu = 0.97 a.m.u. μ = 0.97 a . m . u .
μ = 0.97 × 1.66 ∗ 1 0 − 27 \mu = 0.97 \times 1.66*10^{-27} μ = 0.97 × 1.66 ∗ 1 0 − 27
μ = 1.61 ∗ 1 0 − 27 k g \mu = 1.61*10^{-27} kg μ = 1.61 ∗ 1 0 − 27 k g
K = μ × ( 2 × π × c λ ) 2 K = \mu \times (\frac{2 \times \pi \times c}{\lambda})^2 K = μ × ( λ 2 × π × c ) 2
λ = 1 2886 ∗ 1 0 − 7 = 3465 n m \lambda = \frac{1}{2886} * 10^{-7} = 3465 nm λ = 2886 1 ∗ 1 0 − 7 = 3465 nm
K = 1.61 ∗ 1 0 − 27 ∗ ( 2 ∗ 3.14 ∗ 3 ∗ 1 0 8 3465 ∗ 1 0 − 9 ) 2 K = 1.61*10^{-27} * (\frac{2*3.14*3*10^8}{3465*10^{-9}})^2 K = 1.61 ∗ 1 0 − 27 ∗ ( 3465 ∗ 1 0 − 9 2 ∗ 3.14 ∗ 3 ∗ 1 0 8 ) 2
K = 475.97 K = 475.97 K = 475.97
E = h ∗ c λ E=\frac{h*c}{\lambda} E = λ h ∗ c
J = h 2 Δ E J = \frac{h^2}{\Delta E} J = Δ E h 2
J = 1.21 ∗ 1 0 − 48 J = 1.21*10^{-48} J = 1.21 ∗ 1 0 − 48
d = ( J μ ) d = \sqrt{(\frac{J}{\mu})} d = ( μ J )
d = 2.74 ∗ 1 0 − 11 d = 2.74*10^{-11} d = 2.74 ∗ 1 0 − 11 Answer:
K = 475.97 N/m
d = 2.74*10^(-11) m
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments