Question #143827
Consider the carbonate ion, CO32-
i) Setup and solve the Huckel secular equations for the pi-electrons.
ii) Express the energies in terms of the Coulomb integrals]
iii) Determine the delocalization energy.
1
Expert's answer
2020-11-12T07:09:30-0500

i) the molecular orbitals |ψi⟩ can be described as a linear combination of the 2pz atomic orbital at carbon with corresponding c1 coefficient and 2pz atomic orbitals at oxygen with corresponding c2, c3 and c4 coefficients

c1(H11-ES11)+c2(H12-ES12)+c3(H13-ES13)+c4(H14-ES14)=0

c1(H21-ES21)+c2(H22-ES22)+c3(H23-ES23)+c4(H24-ES24)=0

c1(H31-ES31)+c2(H32-ES32)+c3(H33-ES33)+c4(H34-ES34)=0

c1(H41-ES41)+c2(H42-ES42)+c3(H43-ES43)+c4(H44-ES44)=0

α\alphai = Hii

β\beta ij = Hij; β\beta ij = β\beta ji

Sij = 0

Sii = 1

only adjecent orbitals have interactions

c1(α\alpha1-E)+c2(β\beta 12)+c3(β\beta 13)+c4(β\beta 14)=0

c1(β\beta 21)+c2(α\alpha2-E)+0+0=0

c1(β\beta 31)+0+c3(α\alpha3-E)+0=0

c1(β\beta 41)+0+0+c4(α\alpha4-E)=0

β\beta 12 = β\beta 13=β\beta 14=β\beta

α\alpha2 = α\alpha3 = α\alpha4

α1Eββββα2E00β0α2E0β00α2E\begin{vmatrix} α1-E & β & β & β\\ β & α2-E & 0 & 0\\ β& 0 & α2-E & 0\\ β& 0 & 0 & α2-E\\ \end{vmatrix} = 0

α\alpha1α\alpha23-3α\alpha22β\beta2-3α\alpha1α\alpha22E-α\alpha23E+6α\alpha2β\beta 2E+3α\alpha1α\alpha2E2+3α\alpha22E2-3β\beta2E2-α\alpha1E3-3α\alpha2E3+E4=0

Solving this system we obtain:

E1=0.5(α\alpha1+α\alpha2-(α\alpha12-2α\alpha1α\alpha2+α\alpha22+12β\beta2)0.5)

E2=E3=α\alpha2

E4=0.5(α\alpha1+α\alpha2+(α\alpha12-2α\alpha1α\alpha2+α\alpha22+12β\beta2)0.5)

ii) E1=0.5(α\alpha1+α\alpha2-(α\alpha12-2α\alpha1α\alpha2+α\alpha22+12β\beta2)0.5)

E2=E3=α\alpha2

E4=0.5(α\alpha1+α\alpha2+(α\alpha12-2α\alpha1α\alpha2+α\alpha22+12β\beta2)0.5)

iii) E(delocalized) = 0.5(α\alpha1+α\alpha2-(α\alpha12-2α\alpha1α\alpha2+α\alpha22+12β\beta2)0.5)

Let determine E(localized)

1-carbon, 2-oxygen with double bond

c1(H11-ES11)+c2(H12-ES12)=0

c1(H21-ES21)+c2(H22-ES22)=0


c1(α\alpha1-E)+c2(β\beta 12)=0

c1(β\beta 21)+c2(α\alpha2-E)=0


α1Eββα2E\begin{vmatrix} α1-E & β \\ β & α2-E \\ \end{vmatrix} =0


α\alpha1α\alpha2-β\beta2-α\alpha1E-α\alpha2E+E2 = 0

E1 = 0.5(α\alpha1+α\alpha2-(α\alpha12-2α\alpha1α\alpha2+α\alpha22+4β\beta2)0.5)

E2 = 0.5(α\alpha1+α\alpha2+(α\alpha12-2α\alpha1α\alpha2+α\alpha22+4β\beta2)0.5)

E(delocalization) = 0.5(α\alpha1+α\alpha2+(α\alpha12-2α\alpha1α\alpha2+α\alpha22+4β\beta2)0.5)-0.5(α\alpha1+α\alpha2-(α\alpha12-2α\alpha1α\alpha2+α\alpha22+ 12β\beta2)0.5) = 0.5(-(α\alpha12-2α\alpha1α\alpha2+α\alpha22+4β\beta2)0.5+(α\alpha12-2α\alpha1α\alpha2+α\alpha22+ 12β\beta2)0.5)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS