i) the molecular orbitals |ψi⟩ can be described as a linear combination of the 2pz atomic orbital at carbon with corresponding c1 coefficient and 2pz atomic orbitals at oxygen with corresponding c2, c3 and c4 coefficients
c1(H11-ES11)+c2(H12-ES12)+c3(H13-ES13)+c4(H14-ES14)=0
c1(H21-ES21)+c2(H22-ES22)+c3(H23-ES23)+c4(H24-ES24)=0
c1(H31-ES31)+c2(H32-ES32)+c3(H33-ES33)+c4(H34-ES34)=0
c1(H41-ES41)+c2(H42-ES42)+c3(H43-ES43)+c4(H44-ES44)=0
i = Hii
ij = Hij; ij = ji
Sij = 0
Sii = 1
only adjecent orbitals have interactions
c1(1-E)+c2( 12)+c3( 13)+c4( 14)=0
c1( 21)+c2(2-E)+0+0=0
c1( 31)+0+c3(3-E)+0=0
c1( 41)+0+0+c4(4-E)=0
12 = 13= 14=
2 = 3 = 4
= 0
123-3222-3122E-23E+62 2E+312E2+322E2-32E2-1E3-32E3+E4=0
Solving this system we obtain:
E1=0.5(1+2-(12-212+22+122)0.5)
E2=E3=2
E4=0.5(1+2+(12-212+22+122)0.5)
ii) E1=0.5(1+2-(12-212+22+122)0.5)
E2=E3=2
E4=0.5(1+2+(12-212+22+122)0.5)
iii) E(delocalized) = 0.5(1+2-(12-212+22+122)0.5)
Let determine E(localized)
1-carbon, 2-oxygen with double bond
c1(H11-ES11)+c2(H12-ES12)=0
c1(H21-ES21)+c2(H22-ES22)=0
c1(1-E)+c2( 12)=0
c1( 21)+c2(2-E)=0
=0
12-2-1E-2E+E2 = 0
E1 = 0.5(1+2-(12-212+22+42)0.5)
E2 = 0.5(1+2+(12-212+22+42)0.5)
E(delocalization) = 0.5(1+2+(12-212+22+42)0.5)-0.5(1+2-(12-212+22+ 122)0.5) = 0.5(-(12-212+22+42)0.5+(12-212+22+ 122)0.5)
Comments