Given that standard free energies of formation of Ag+(aq),Cl-(aq),and AgCl(s) are 77.1kJ/mol,-131.2kJ/mol and q-109.9kJ/mol respectively calculate solubility product Ksp for AgCl(s).
"\u0394G=\u0394G(AgCl(s))\u2212[\u0394G(Ag \n^+\n )+\u0394G(Cl \n^\u2212\n )]\\\\=\u2212109kJ\/mol\u2212[77kJ\/mol\u2212129kJ\/mol]=\u221257kJ\/mol"
"\u0394G=\u2212nFE"
on putting values of "\\Delta G" , n and F we get
"E _\n0\n =0.222V"
"E=E_ \n0\n \u2212 \n\\frac{\n0.0592}n\n\u200b\t\n log \\frac1{\n[Ag \n+\n ][Cl \n\u2212\n ]\n\n\u200b\t\n }"
"0.59V=0.222V\u2212 \n\\frac{\n0.0592}1\n\u200b\t\n log \\frac1{\nK _{\nsp}\n\u200b\t\n \n\n\u200b\t\n }"
"log\\frac1{ \nK \n_{sp}}\n\u200b\t\n \n\n\u200b\t\n =6.2276"
"K_ \n{s p}\n\u200b\t\n =5.9\u00d710 ^{\n\u22127\n }"
Comments
Leave a comment