Question #107183
Show that the velocity profile is steady and laminar flow of Newtonian fluid in circular pipe is parabolic. Also prove that average velocity is half of maximum velocity of fluid. Determine kinetic energy correction factor and momentum co-reaction factor for laminar flow of a Newtonian fluid in pipeline.
1
Expert's answer
2020-04-03T11:48:35-0400



1.Kinetic Energy Correction Factor

(K.E.)actual=12mv2(K.E.)_{actual}=\frac{1}2mv^2

(K.E.)actual=0R12ρ(2πr)v3dr(K.E.)_{actual}=\int_0^R\frac{1}2\rho (2πr)v^3 dr

(K.E.)actual=0R12ρ(2πr)v3dr(K.E.)_{actual}=\int_0^R\frac{1}2\rho (2πr)v^3 dr

(K.E.)actual=πρ(14μ)3(dpdx)30R(R2r2)3rdr(K.E.)_{actual}=-π\rho(\frac1{4\mu})^3(\frac{dp}{dx})^3\int_0^R(R^2-r^2)^3rdr

(K.E.)actual=πρ(14μ)3(dpdx)30R[rR6r73R4r3+3R2r5]dr(K.E.)_{actual}=-π\rho(\frac1{4\mu})^3(\frac{dp}{dx})^3\int_0^R[rR^6-r^7-3R^4r^3+3R^2r^5]dr

(K.E.)actual=πρ(14μ)3(dpdx)3[R82R883R84+3R86](K.E.)_{actual}=-π\rho(\frac1{4\mu})^3(\frac{dp}{dx})^3[\frac{R^8}2-\frac{R^8}8-\frac{3R^8}{4}+\frac{3R^8}{6}]

(K.E.)actual=πρ(14μ)3(dpdx)3[R88](K.E.)_{actual}=-π\rho(\frac1{4\mu})^3(\frac{dp}{dx})^3[\frac{R^8}{8}]

(K.E.)avg=12ρAv3(K.E.)_{avg}=\frac{1}2\rho A v^3

(K.E.)avg=11024μ3ρπR2(dpdx)3R6(K.E.)_{avg}=-\frac{1}{1024\mu^3}\rho πR^2(\frac{dp}{dx})^3R^6

α=(K.E.)actual(K.E.)avg=2\alpha=\frac{(K.E.)_{actual}}{(K.E.)_{avg}}=2



2.Momentum Correction Factor

Pavg=mvavg=ρπR2(18μ)2(dpdx)2R4P_{avg}=mv_{avg}=\rhoπR^2 (\frac{-1}{8\mu})^2(\frac{dp}{dx})^2R^4

Pavg=ρπ(164(μ)2)2(dpdx)2R6P_{avg}=\rhoπ (\frac{1}{64(\mu)^2})^2(\frac{dp}{dx})^2R^6

Pactual=ρdAv2P_{actual}=\rho dA v^2

Pactual=ρ0R(2πrdr)((14μ)2(dpdx)2(R2r2)2)P_{actual}=\rho\int_0^R (2πrdr) ((\frac{-1}{4\mu})^2(\frac{dp}{dx})^2(R^2-r^2)^2)

Pactual=2πρ116(μ)2(dpdx)20R(rR4+r52R2r3)drP_{actual}=2π\rho \frac{1}{16(\mu)^2} (\frac{dp}{dx})^2 \int_0^R( rR^4+r^5-2R^2r^3)dr

Pactual=2πρ116(μ)2(dpdx)2[R62+R66R62]P_{actual}=2π\rho \frac{1}{16(\mu)^2} (\frac{dp}{dx})^2 [\frac{R^6}2+\frac{R^6}6-\frac{R^6}2]

Pactual=πρ148(μ)2(dpdx)2R6P_{actual}=π\rho \frac{1}{48(\mu)^2} (\frac{dp}{dx})^2 R^6

β=PactualPavg=43\beta=\frac{P_{actual}}{P_{avg}}=\frac{4}{3}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS