1.Kinetic Energy Correction Factor
"(K.E.)_{actual}=\\frac{1}2mv^2"
"(K.E.)_{actual}=\\int_0^R\\frac{1}2\\rho (2\u03c0r)v^3 dr"
"(K.E.)_{actual}=\\int_0^R\\frac{1}2\\rho (2\u03c0r)v^3 dr"
"(K.E.)_{actual}=-\u03c0\\rho(\\frac1{4\\mu})^3(\\frac{dp}{dx})^3\\int_0^R(R^2-r^2)^3rdr"
"(K.E.)_{actual}=-\u03c0\\rho(\\frac1{4\\mu})^3(\\frac{dp}{dx})^3\\int_0^R[rR^6-r^7-3R^4r^3+3R^2r^5]dr"
"(K.E.)_{actual}=-\u03c0\\rho(\\frac1{4\\mu})^3(\\frac{dp}{dx})^3[\\frac{R^8}2-\\frac{R^8}8-\\frac{3R^8}{4}+\\frac{3R^8}{6}]"
"(K.E.)_{actual}=-\u03c0\\rho(\\frac1{4\\mu})^3(\\frac{dp}{dx})^3[\\frac{R^8}{8}]"
"(K.E.)_{avg}=\\frac{1}2\\rho A v^3"
"(K.E.)_{avg}=-\\frac{1}{1024\\mu^3}\\rho \u03c0R^2(\\frac{dp}{dx})^3R^6"
"\\alpha=\\frac{(K.E.)_{actual}}{(K.E.)_{avg}}=2"
2.Momentum Correction Factor
"P_{avg}=mv_{avg}=\\rho\u03c0R^2 (\\frac{-1}{8\\mu})^2(\\frac{dp}{dx})^2R^4"
"P_{avg}=\\rho\u03c0 (\\frac{1}{64(\\mu)^2})^2(\\frac{dp}{dx})^2R^6"
"P_{actual}=\\rho dA v^2"
"P_{actual}=\\rho\\int_0^R (2\u03c0rdr) ((\\frac{-1}{4\\mu})^2(\\frac{dp}{dx})^2(R^2-r^2)^2)"
"P_{actual}=2\u03c0\\rho \\frac{1}{16(\\mu)^2} \n (\\frac{dp}{dx})^2 \\int_0^R( rR^4+r^5-2R^2r^3)dr"
"P_{actual}=2\u03c0\\rho \\frac{1}{16(\\mu)^2} \n (\\frac{dp}{dx})^2 [\\frac{R^6}2+\\frac{R^6}6-\\frac{R^6}2]"
"P_{actual}=\u03c0\\rho \\frac{1}{48(\\mu)^2} \n (\\frac{dp}{dx})^2 R^6"
"\\beta=\\frac{P_{actual}}{P_{avg}}=\\frac{4}{3}"
Comments
Leave a comment