Question #115871
How much 0.15 M Na2SO4= solution is needed to precipitate the BaSO4 in which AgNO3 contains 1 g per 20 ml are needed to precipitate the AgCl from a 0.5000 g sample of BaCl2∙2H2O?
1
Expert's answer
2020-05-15T09:36:57-0400

mass percent of BaCl2BaCl_2 in BaCl22H2OBaCl_2*2H_2O is

mass%=M(BaCl2)M(BaCl22H2O)=208.23244.27=0.85mass \% = \frac{M(BaCl_2)}{M(BaCl_2*2H_2O)}= \frac{208.23}{244.27}= 0.85

m(BaCl2)=mass%×m(BaCl22H2O)=0.850.5000=0.425gm(BaCl_2)= mass \%\times m(BaCl_2*2H_2O)= 0.85*0.5000 = 0.425 g


a) Na2SO4+BaCl2=BaSO4+2NaClNa_2SO_4+ BaCl_2 = BaSO_4+ 2NaCl

moles(Na2SO4)=0.425gBaCl2(1molBaCl2208.23gBaCl2)(1molNa2SO41moleBaCl2)=0.002041molNa2SO4moles (Na_2SO_4)=0.425 g BaCl_2 (\frac{1 mol BaCl_2}{208.23 g BaCl_2})(\frac{1 mol Na_2SO_4}{1 mole BaCl_2})= 0.002041 mol Na_2SO_4


V=nc=0.0020410.15=0.01361L=136.1mLV=\frac{n}{c}=\frac{0.002041}{0.15} = 0.01361 L = 136.1 mL


b) 2AgNO3+BaCl2=Ba(NO3)2+2AgCl2AgNO_3 + BaCl_2 = Ba(NO_3)_2 +2AgCl

mass(AgNO3)=0.425gBaCl2(1moleBaCl2208.23gBaCl2)(2moleAgNO31moleBaCl2)(169.87gAgNO31moleAgNO3)=0.6934gAgNO3mass (AgNO_3) = 0.425 g BaCl_2(\frac{1 mole BaCl_2}{208.23 g BaCl_2})(\frac{2 mole AgNO_3}{1 mole BaCl_2})(\frac {169.87 g AgNO_3}{1 mole AgNO_3})= 0.6934 g AgNO_3

Vsolution=0.6934g(20mL1g)=13.88mLV_{solution}= 0.6934 g (\frac{20 mL}{1 g})=13.88 mL


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS