(b) Molar volume of an ideal gas at S.A.T.P. (25oC and 1.00 bar is 24.8 dm3 mol-1.
Assume that gases are at 225oC and P=1.00 atmosphere before and after the combustion and behave as ideal gases.
The chemical equation for the combustion of butane is:
2C4H10(g) + 13O2(g) → 8CO2(g) + 10H2O(l)
At 225oC, we ignite a mixture of 5.00 dm3 of butane and 75.0 dm3 of O2
i. Is there enough oxygen for the complete combustion of the butane present? Explain your answer. [2 marks]
ii. What gases are present in the resulting mixture after combustion? [2 marks]
iii. Calculate the final volume of the mixture after combustion (3 sig. fig). [4 marks]
iv. Calculate the amounts (number of moles) of O2 and butane consumed using the
molar volume of an ideal gas at S.A.T.P (3 sig. fig). [4 marks]
v. The final mixture is cooled down from 225oC to 25oC. Calculate the volume of
the resulting gaseous mixture (3 sig. fig.). [3 marks]
Comments
Leave a comment