"N_2O_4 \\rightleftharpoons 2NO_2 \\\\\n\n[N_2O_4]_{in}= \\frac{0.2 \\;mol}{0.400\\;L} = 0.5 \\;M"
"K= \\frac{[NO_2]^2}{[N_2O_4]} \\\\\n\nK = \\frac{(2x)^2}{0.5-x} = 1.07 \\times 10^{-5}"
Assume that the change in concentration of N2O4 is small enough to be neglected.
"0.5-x \u22480.5 \\\\\n\n\\frac{4x^2}{0.5}=1.07 \\times 10^{-5} \\\\\n\nx = \\sqrt{1.3375 \\times 10^{-6}} \\\\\n\n= 1.15 \\times 10^{-3} = 0.00115 \\;M"
The equilibrium concentration of NO2
"[NO_2]_{eq}= 2 \\times 0.00115 = 0.0023 \\;M"
b.
"[N_2O_4]_{final} = 0.5-0.00115 = 0.49885 \\;M"
Proportion:
0.5 M – 100 %
0.49885 M – x
"x = \\frac{0.49885 \\times 100}{0.5}=99.77 \\; \\%"
The percentage decomposition of the original N2O4 will be 100-99.77=0.23 %
Comments
Nice one, thanks alot I appreciate greatly..
Leave a comment