N_2O_4 \rightleftharpoons 2NO_2 \\
[N_2O_4]_{in}= \frac{0.2 \;mol}{0.400\;L} = 0.5 \;M
K = [ N O 2 ] 2 [ N 2 O 4 ] K = ( 2 x ) 2 0.5 − x = 1.07 × 1 0 − 5 K= \frac{[NO_2]^2}{[N_2O_4]} \\
K = \frac{(2x)^2}{0.5-x} = 1.07 \times 10^{-5} K = [ N 2 O 4 ] [ N O 2 ] 2 K = 0.5 − x ( 2 x ) 2 = 1.07 × 1 0 − 5
Assume that the change in concentration of N2 O4 is small enough to be neglected.
0.5 − x ≈ 0.5 4 x 2 0.5 = 1.07 × 1 0 − 5 x = 1.3375 × 1 0 − 6 = 1.15 × 1 0 − 3 = 0.00115 M 0.5-x ≈0.5 \\
\frac{4x^2}{0.5}=1.07 \times 10^{-5} \\
x = \sqrt{1.3375 \times 10^{-6}} \\
= 1.15 \times 10^{-3} = 0.00115 \;M 0.5 − x ≈ 0.5 0.5 4 x 2 = 1.07 × 1 0 − 5 x = 1.3375 × 1 0 − 6 = 1.15 × 1 0 − 3 = 0.00115 M
The equilibrium concentration of NO2
[ N O 2 ] e q = 2 × 0.00115 = 0.0023 M [NO_2]_{eq}= 2 \times 0.00115 = 0.0023 \;M [ N O 2 ] e q = 2 × 0.00115 = 0.0023 M
b.
[ N 2 O 4 ] f i n a l = 0.5 − 0.00115 = 0.49885 M [N_2O_4]_{final} = 0.5-0.00115 = 0.49885 \;M [ N 2 O 4 ] f ina l = 0.5 − 0.00115 = 0.49885 M
Proportion:
0.5 M – 100 %
0.49885 M – x
x = 0.49885 × 100 0.5 = 99.77 % x = \frac{0.49885 \times 100}{0.5}=99.77 \; \% x = 0.5 0.49885 × 100 = 99.77 %
The percentage decomposition of the original N2 O4 will be 100-99.77=0.23 %
Comments
Nice one, thanks alot I appreciate greatly..