Question #99373
The atmosphere contains the highly reactive molecule, OH, which acts to remove selected pollutants. Use the values for \Delta H rxn given below to find the \Delta H rxn for the formation of OH and H from water.
1/2 H2(g) + 1/2 O2(g) \rightarrow OH(g) \DeltaHrxn = 42.1 kJ
H2(g)\rightarrow 2H(g) \Delta Hrxn = 435.9 kJ
H2(g) + 1/2 O2(g)\rightarrow H2O(g) \DeltaHrxn = -241.8 kJ
H2O(g) \rightarrow H(g) + OH(g) \DeltaHrxn = ?
1
Expert's answer
2019-11-25T07:25:25-0500

(I) 12H2(g)+12O2(g)OH(g)\frac{1}{2}H_2(g)+ \frac{1}{2}O_2(g) \rightarrow OH(g) ΔHrxn=42.1kJ\Delta H_{rxn} = 42.1 kJ


(II) H2(g)2H(g)H_2(g) \rightarrow 2H(g) ΔHrxn=435.9kJ\Delta H_{rxn} = 435.9 kJ


(III) H2(g)+12O2(g)H2O(g)H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g) ΔHrxn=241.8kJ\Delta H_{rxn} = -241.8 kJ


To get ΔHrxn\Delta H_{rxn} for the formation of OH and H from water we should add (III)+(I)+(II)2- (III) + (I)+\frac{(II)}{2}


-(III) H2O(g)H2(g)+12O2(g)H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g) ΔHrxn=241.8kJ\Delta H_{rxn} = 241.8 kJ


(I) 12H2(g)+12O2(g)OH(g)\frac{1}{2}H_2(g) + \frac{1}{2} O_2(g)\rightarrow OH(g) ΔHrxn=42.1kJ\Delta H_{rxn} = 42.1 kJ


(II)2\frac{(II)}{2} 12H2(g)H(g)\frac {1}{2}H_2 (g) \rightarrow H(g) ΔHrxn=435.92=217.95kJ\Delta H_{rxn} = \frac{435.9}{2} = 217.95 kJ


After addition:


H2O(g)+12H2(g)+12O2(g)+12H2(g)H2(g)+12O2(g)+OH(g)+H(g)H_2O(g) + \frac{1}{2}H_2(g)+\frac{1}{2}O_2(g) + \frac{1}{2}H_2(g) \rightarrow H_2(g)+\frac{1}{2}O_2(g) + OH(g)+ H(g)


H2O(g)OH(g)+H(g)H_2O(g) \rightarrow OH(g) + H(g) ΔHrxn=241.8+42.1+217.95=501.85kJ\Delta H_{rxn} = 241.8 + 42.1 +217.95 =501.85 kJ



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS