1)According to the Dalton’s Law the total pressure is the sum of the partial pressures thus
"p = {p_{{C_3}{H_8}}} + {p_{C{H_4}}} = 0.395[{\\rm{atm}}] + 0.485[{\\rm{atm}}] = 0.88[{\\rm{atm}}]" 2)The partial pressure of the i-th component can be found as (it follows from the ideal gas law) as product of the mole fraction and total pressure
"{p_i} = {\\omega _i}p"
thus the mole fraction of "{{C_3}{H_8}}" is
"{\\omega _{{C_3}{H_8}}} = {{{p_{{C_3}{H_8}}}} \\over p} = {{0.395[{\\rm{atm}}]} \\over {0.88[{\\rm{atm}}]}} \\approx 0.449" 3)We can find the number of moles of "{{C_3}{H_8}}" using the ideal gas law for it
"{p_{{C_3}{H_8}}}V = {\\nu _{{C_3}{H_8}}}RT"thus
"{\\nu _{{C_3}{H_8}}} = {{{p_{{C_3}{H_8}}}V} \\over {RT}}" and we can do calculations
"{\\nu _{{C_3}{H_8}}} = {{0.395 \\cdot 101325[{\\rm{Pa}}] \\cdot 2.95 \\cdot {{10}^{ - 3}}[{{\\rm{m}}^3}]} \\over {8.314[{{\\rm{J}} \\over {{\\rm{K}} \\cdot {\\rm{mol}}}}] \\cdot (30 + 273.15)[{\\rm{K}}]}} \\approx 0.0468[{\\rm{mol}}]" 4)We can calculate the number of moles of "C{H_4}" using the same way
"{\\nu _{C{H_4}}} = {{0.395 \\cdot 101325[{\\rm{Pa}}] \\cdot 2.95 \\cdot {{10}^{ - 3}}[{{\\rm{m}}^3}]} \\over {8.314[{{\\rm{J}} \\over {{\\rm{K}} \\cdot {\\rm{mol}}}}] \\cdot (30 + 273.15)[{\\rm{K}}]}} \\approx 0.0575[{\\rm{mol}}]" and then calculate the mass of the sample
"m = {\\nu _{{C_3}{H_8}}}{M_{{C_3}{H_8}}} + {\\nu _{C{H_4}}}{M_{C{H_4}}}"
"m = 0.0468[{\\rm{mol}}] \\cdot 44.097[{{\\rm{g}} \\over {{\\rm{mol}}}}] + 0.0575[{\\rm{mol}}] \\cdot 16.043[{{\\rm{g}} \\over {{\\rm{mol}}}}] = 2.986[{\\rm{g}}]"
Comments
Leave a comment