The equation of chemical reaction (unbalanced!) is
"KCl{O_3} + P \\to {P_4}{O_{10}} + KCl" It's easy to balance it (first balance the "O" multiplying "KCl{O_3}" by 10 and "{P_4}{O_{10}}" by 3, then balance "K" multiplying "KCl" by 10 and balance "P" multiplying "P" by 12, "Cl" will be balanced automatically) and we get
"10KCl{O_3} + 12P \\to 3{P_4}{O_{10}} + 10KCl" Then calculate the molar mass of "KCl{O_3}" as the sum of atomic weights (can be found in periodic table) "{M_{KCl{O_3}}} = {M_K} + {M_{Cl}} + 3{M_O}" , we get
"{M_{KCl{O_3}}} \\approx 39.098[\\frac{{\\text{g}}}{{{\\text{mol}}}}] + 35.446[\\frac{{\\text{g}}}{{{\\text{mol}}}}] + 3 \\cdot 16[\\frac{{\\text{g}}}{{{\\text{mol}}}}] = 122.544[\\frac{{\\text{g}}}{{{\\text{mol}}}}]" The same for "{P_4}{O_{10}}"
"{M_{{P_4}{O_{10}}}} \\approx 4 \\cdot 30.974[\\frac{{\\text{g}}}{{{\\text{mol}}}}] + 10 \\cdot 16[\\frac{{\\text{g}}}{{{\\text{mol}}}}] = 283.896[\\frac{{\\text{g}}}{{{\\text{mol}}}}]" Now, we can see from the equation that for each 10 moles of "KCl{O_3}" we get 3 moles of "{P_4}{O_{10}}" , in other words for each 1 mole of "KCl{O_3}" we get "\\frac{3}{{10}}" moles of "{P_4}{O_{10}}" . We can calculate the number of moles of "KCl{O_3}"
"{\\nu _{KCl{O_3}}} = \\frac{{48.7[{\\text{g}}]}}{{122.544[\\frac{{\\text{g}}}{{{\\text{mol}}}}]}} \\approx 0.397[{\\text{mol}}]"
And we can calculate the number of moles obtained "{P_4}{O_{10}}"
"{\\nu _{{P_4}{O_{10}}}} = \\frac{3}{{10}}{\\nu _{KCl{O_3}}} = \\frac{3}{{10}} \\cdot 0.397[{\\text{mol}}] \\approx 0.12[{\\text{mol}}]" Let's calculate the mass of obtained "{P_4}{O_{10}}"
"{m_{{P_4}{O_{10}}}} = {\\nu _{{P_4}{O_{10}}}} \\cdot {M_{{P_4}{O_{10}}}} = 0.12[{\\text{mol}}] \\cdot 283.896[\\frac{{\\text{g}}}{{{\\text{mol}}}}] \\approx 34.07[{\\text{g}}]"
Comments
Leave a comment