Question #95573
The reaction between potassium chlorate and red phosphorus takes place when you strike a match on a matchbox. If you were to react 48.7 g of potassium chlorate (KClO3) with excess red phosphorus, what mass of tetraphosphorus decaoxide (P4O10) could be produced?
1
Expert's answer
2019-09-30T05:13:20-0400

The equation of chemical reaction (unbalanced!) is


KClO3+PP4O10+KClKCl{O_3} + P \to {P_4}{O_{10}} + KCl

It's easy to balance it (first balance the OO multiplying KClO3KCl{O_3} by 10 and P4O10{P_4}{O_{10}} by 3, then balance KK multiplying KClKCl by 10 and balance PP multiplying PP by 12, ClCl will be balanced automatically) and we get


10KClO3+12P3P4O10+10KCl10KCl{O_3} + 12P \to 3{P_4}{O_{10}} + 10KCl

Then calculate the molar mass of KClO3KCl{O_3} as the sum of atomic weights (can be found in periodic table) MKClO3=MK+MCl+3MO{M_{KCl{O_3}}} = {M_K} + {M_{Cl}} + 3{M_O} , we get


MKClO339.098[gmol]+35.446[gmol]+316[gmol]=122.544[gmol]{M_{KCl{O_3}}} \approx 39.098[\frac{{\text{g}}}{{{\text{mol}}}}] + 35.446[\frac{{\text{g}}}{{{\text{mol}}}}] + 3 \cdot 16[\frac{{\text{g}}}{{{\text{mol}}}}] = 122.544[\frac{{\text{g}}}{{{\text{mol}}}}]

The same for P4O10{P_4}{O_{10}}


MP4O10430.974[gmol]+1016[gmol]=283.896[gmol]{M_{{P_4}{O_{10}}}} \approx 4 \cdot 30.974[\frac{{\text{g}}}{{{\text{mol}}}}] + 10 \cdot 16[\frac{{\text{g}}}{{{\text{mol}}}}] = 283.896[\frac{{\text{g}}}{{{\text{mol}}}}]

Now, we can see from the equation that for each 10 moles of KClO3KCl{O_3} we get 3 moles of P4O10{P_4}{O_{10}} , in other words for each 1 mole of KClO3KCl{O_3} we get 310\frac{3}{{10}} moles of P4O10{P_4}{O_{10}} . We can calculate the number of moles of KClO3KCl{O_3}


νKClO3=48.7[g]122.544[gmol]0.397[mol]{\nu _{KCl{O_3}}} = \frac{{48.7[{\text{g}}]}}{{122.544[\frac{{\text{g}}}{{{\text{mol}}}}]}} \approx 0.397[{\text{mol}}]


And we can calculate the number of moles obtained P4O10{P_4}{O_{10}}


νP4O10=310νKClO3=3100.397[mol]0.12[mol]{\nu _{{P_4}{O_{10}}}} = \frac{3}{{10}}{\nu _{KCl{O_3}}} = \frac{3}{{10}} \cdot 0.397[{\text{mol}}] \approx 0.12[{\text{mol}}]

Let's calculate the mass of obtained P4O10{P_4}{O_{10}}


mP4O10=νP4O10MP4O10=0.12[mol]283.896[gmol]34.07[g]{m_{{P_4}{O_{10}}}} = {\nu _{{P_4}{O_{10}}}} \cdot {M_{{P_4}{O_{10}}}} = 0.12[{\text{mol}}] \cdot 283.896[\frac{{\text{g}}}{{{\text{mol}}}}] \approx 34.07[{\text{g}}]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS