Question #95172
5.17 grams of CaCl 2 was added to 85.0 cm 3 of water in a Styrofoam cup calorimeter. The temperature of the water changed from 21.4°C to 27.5 °C.
Calculate the molar q value (q mol) for dissolving 5.17 grams of CaCl 2 in 85.0 cm 3 of water.
Assume the heat capacity of the system is due only to the water in the system. The specific heat of water is 4.18 J/(g∙°C).
1
Expert's answer
2019-09-24T05:57:50-0400

The amout of heat needed to change the temperature of water can be calculated as


Q=cmH2OΔTQ = c{m_{{H_2}O}}\Delta T


where mH2O=ρV{m_{{H_2}O}} = \rho V - the mass of water and cc is the specific heat of water. Now let's fint QQ


Q=cρVΔT=4180[JkgC]1000[kgm3]85.0106[m3](27.5[C]21.4[C])=2167.33[J]Q = c\rho V\Delta T = 4180[\frac{{\rm{J}}}{{{\rm{kg}} \cdot {\rm{^\circ C}}}}] \cdot 1000[\frac{{{\rm{kg}}}}{{{{\rm{m}}^{\rm{3}}}}}] \cdot 85.0 \cdot {10^{ - 6}}[{{\rm{m}}^3}] \cdot (27.5[{\rm{^\circ C}}] - 21.4[{\rm{^\circ C}}]) = 2167.33[{\rm{J}}]

(we use that V=85.0[cm3]=85.0106[m3]V = 85.0[{\rm{c}}{{\rm{m}}^3}] = 85.0 \cdot {10^{ - 6}}[{{\rm{m}}^3}] and c=4.18[JgC]=4180[JkgC]c = 4.18[\frac{{\rm{J}}}{{{\rm{g}} \cdot {\rm{^\circ C}}}}] = 4180[\frac{{\rm{J}}}{{{\rm{kg}} \cdot {\rm{^\circ C}}}}] )

Next we can find the number of moles in 5.17[g]5.17[{\rm{g}}] grams of CaCl2CaC{l_2} . Calculate the molar mass of CaCl2CaC{l_2}

MCaCl2=MCa+2MCl=40.08[gmol]+235.45[gmol]=110.98[gmol]{M_{CaC{l_2}}} = {M_{Ca}} + 2{M_{Cl}} = 40.08[\frac{{\rm{g}}}{{{\rm{mol}}}}] + 2 \cdot 35.45[\frac{{\rm{g}}}{{{\rm{mol}}}}] = 110.98[\frac{{\rm{g}}}{{{\rm{mol}}}}]

(atomic weights of atoms can be found in the periodic table). Thus the number of moles is


ν=mMCaCl2=5.17[g]110.98[gmol]0.047[mol]\nu = \frac{m}{{{M_{CaC{l_2}}}}} = \frac{{5.17[{\rm{g}}]}}{{110.98[\frac{{\rm{g}}}{{{\rm{mol}}}}]}} \approx 0.047[{\rm{mol}}]

and the molar heat of solution is


Cν=Qν=2167.33[J]0.047[mol]46113.4[Jmol]{C_\nu } = \frac{Q}{\nu } = \frac{{2167.33[{\rm{J}}]}}{{0.047[{\rm{mol}}]}} \approx 46113.4[\frac{{\rm{J}}}{{{\rm{mol}}}}]

(!!!)Note: please check the initial conditions of the problem - they can be wrong because the real value is Cν83000[Jmol]{C_\nu } \approx 83000[\frac{{\rm{J}}}{{{\rm{mol}}}}] )



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS