Velocity of a gaseous molecule"=" "v_{rms}=\\sqrt{\\frac{3k_bT}{M}}"
"M=Molecular\\ mass"
Molecular mass is equal to "1\\frac{g}{mol}=0.001\\frac{kg}{mol}"
putting the values in formula
"v_{rms}=\\sqrt{\\frac{3\\times 1.38\\times 10^{-23}\\times T}{0.001}}=2.0347\\times 10^{-10}\\sqrt{T}\\frac{m}{sec} \\ \\ \\ \\ \\ \\ \\ \\ \\ .........(1)"
Equation "(1)\\" gives the variation of of velocity of gaseous molecule with molecular weight 1 with temprature.
Morever , According to graham's law
rate of diffusion "\u221d" "\\sqrt{\\frac{1}{M}}"
or "v" "\u221d\\sqrt{\\frac{1}{M}}"
using ideal gas equation
"PV=nRT"
"P=\\frac{nRT}{V}"
"T=300\\ K,R=8.314,\\ n=1"
"PV=2494.2\\ J\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ or\\ \\ \\ P=\\frac{2494.2}{V}"
"P \u221d\\frac{1}{V}"
So pressure will be maximum when volume is minimum
So pressure will be maximum when volume is "0.01\\ l"
Comments
Leave a comment