The energy of light emitted can be calculated as a difference between energy of the upper level and the lower level:
"E=E_{n2}-E_{n1}=-\\frac{me^4}{8h^2e_0^2}\\frac{1}{n_2^2}+\\frac{me^4}{8h^2e_0^2}\\frac{1}{n_1^2}=\\frac{me^4}{8h^2e_0^2}(\\frac{1}{n_1^2}-\\frac{1}{n_2^2})"
In our case n1 = 3 and n2 = 5:
"E(light)=\\frac{(9.1*10^{-31} kg) (1.6*10^{-19} A*s)^4}{8*(6.63*10^{-34} J*s)^2(8.85*10^{-12} F*m^{-1})^2}(\\frac{1}{9}-\\frac{1}{25})=1.5*10^{-19} J" Thus, the energy of light emitted is equal to 1.5*10-19 J or 0.94 eV.
Comments
Leave a comment