Question #87421
Calculate the enthalpy change in the burning of 4.000 mol gaseous 1-pentanol to form gaseous products at 25°C.

ΔH° = _______ kJ
1
Expert's answer
2019-04-02T05:57:27-0400
2C5H12O(g)+15O2(g)10CO2(g)+12H2O(g)2C_5H_{12}O(g) + 15 O_2(g)\rightarrow 10CO_2(g) + 12H_2O(g)

ΔHf0(C2H12O(g))=294.6kJmol\Delta H_f^0 (C_2H_{12}O(g)) = -294.6\frac{kJ}{mol}


ΔHf0(CO2(g))=393.5kJmol\Delta H_f^0 (CO_2(g)) = -393.5 \frac{kJ}{mol}


ΔHf0(H2O(g))=241.8kJmol\Delta H_f^0 (H_2O(g)) = -241.8 \frac{kJ}{mol}



ΔHrxn0=ΔHproductsΔHrectants\Delta H_{rxn}^0 = \sum \Delta H_{products} - \sum \Delta H_{rectants}

ΔHrxn0=[10×ΔHf0(CO2(g))+12×ΔHf0(H2O(g))][2×ΔHf0(C2H12O(g))+15×ΔHf0(O2(g))]=[10×(393.5)+12×(241.8)][2×(294.6)+15×0]=6247.4kJmol\Delta H_{rxn}^0 =[10\times \Delta H_f^0(CO_2(g))+12\times \Delta H_f^0(H_2O(g))] - [2\times \Delta H_f^0 (C_2H_{12}O(g))+ 15\times \Delta H_f^0(O_2(g))] = [10\times(-393.5)+12\times(-241.8)]- [2\times(-294.6)+15\times 0] = 6247.4 \frac{kJ}{mol}


ΔH0=ΔHrxn0×n=6247.4kJmol×4.000mol=24989.6kJ\Delta H^0 = \Delta H_{rxn}^0 \times n = -6247.4\frac{kJ}{mol}\times 4.000 mol = -24989.6 kJ

As ΔH0<0\Delta H^0<0 , then Q>0Q>0 , reaction is exothermic


Answer: -24989.6 kJ, exothermic


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS