Question #286081

Calculate the wavelength of light absorb when an electron jump from n=5 to n=6 state in hydrogen atom?

1
Expert's answer
2022-01-10T13:56:50-0500

En=2.18×1018J(1n2)E_n=-2.18×10^{-18}J(\frac{1}{n^2})


=2.18×1018J(1nf21ni2)=-2.18×10^{-18}J(\frac{1}{n^2_f}-\frac{1}{n^2_i})


=2.18×1018J(162152)=-2.18×10^{-18}J(\frac{1}{6^2}-\frac{1}{5^2})


=2.18×1018J(11900)-2.18×10^{-18}J(-\frac{11}{900})


=2.66×1020J=2.66×10^{-20}J


/ΔE/=Ephoton=hv=hcλ/\Delta E / =E_{photon}=hv =\frac{hc}{\lambda}

Where h is Planck's constant,

c is the speed of light,

λ\lambda is the wavelength of the incoming photon

Thus wavelength is

λ=hcEphoton\lambda=\frac{hc}{E_{photon}}


=(6.626×1034J.s)(2.998×108m/s)2.66×1020J=\frac{(6.626×10^{-34}J.s)(2.998×10^8m/s)}{2.66×10^{-20}J}


=7.468×106m=7.468×10^{-6}m


=74.68nm=74.68nm


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS