Number of atoms present in a FCC unit are four.
Density of face-centered cubic unit cell=4 × M A 3 × N a \frac{4\times M}{A3\times Na} A 3 × N a 4 × M
M = m o l a r m a s s o f x e n o n = 131.293 g M=molar\space mass \space of \space xenon=131.293g M = m o l a r ma ss o f x e n o n = 131.293 g
A = A= A = edge of unit cell= 2 2 r = 2 × 2 × 186.9 × 1 0 − 12 = 3.8668 × 1 0 − 3 c m =2\sqrt{2r}=2\times \sqrt{2\times 186.9\times 10^{-12}}=3.8668\times 10^{-3}cm = 2 2 r = 2 × 2 × 186.9 × 1 0 − 12 = 3.8668 × 1 0 − 3 c m
N a = Na= N a = Avogadro's number= 6.02 × 1 0 23 =6.02\times 10^{23} = 6.02 × 1 0 23
In this case, density of xenon= 4 × 131.293 g ( 3.8668 × 1 0 − 3 ) 3 × 6.02 × 1 0 23 c m 3 = 525.172 g ( 3.4806 × 1 0 16 c m 3 ) = 1.5089 × 1 0 − 14 g / c m 3 =\frac{4\times 131.293g}{(3.8668\times 10^{-3})^3 \times 6.02\times 10^{23}cm^3}=\frac{525.172g}{(3.4806\times 10^{16}cm^3)}=1.5089\times 10^{-14}g/cm^3 = ( 3.8668 × 1 0 − 3 ) 3 × 6.02 × 1 0 23 c m 3 4 × 131.293 g = ( 3.4806 × 1 0 16 c m 3 ) 525.172 g = 1.5089 × 1 0 − 14 g / c m 3
Comments