Question #213412

Find an expression for activity coefficient from the  Two-suffix- Margules equation for excess Gibbs energy.

The expression for Two-suffix-Magules Equation is given by :

GE=Ax1x2G^E=Ax_1x_2


1
Expert's answer
2021-07-05T03:22:51-0400

Given expression for two-suffix-magules equation is given by-


GERT=AX1X2\dfrac{G^{E}}{RT}=AX_1X_2


,where RT=constantwhere \ RT=constant and X1 andX2 are thefractions of each component.and\ X_1\ andX_2\ are \ the fractions\ of \ each \ component.



Now portion molar excess gibbs free energy is given by the equation -


GiE=RTlnγiG_i^{E}=RTln\gamma_{i}


The above equation can also be written as-


GiRT=lnγi\dfrac{G_{i}}{RT}=ln\gamma_{i}


now by definition of extensive partial molar property -


lnγi=((nGE(RT))ni)T,P,njln\gamma_{i}=(\dfrac{\partial({\dfrac{nG^{E}}{(RT)}})}{\partial{n}_{i}})_T,_P,n_{j} (partial molar excess gibbs free energy)


lnγ1=((nGE(RT))n1)T,P,n1ln\gamma_{1}=(\dfrac{\partial({\dfrac{nG^{E}}{(RT)}})}{\partial{n}_{1}})_T,_P,n_{1}



Now, by expression for - two - suffix- magules -


GERT=AX1X2\dfrac{G^{E}}{RT}=AX_1X_2 X1=n1n1+n2X_{1}=\dfrac{n_{1}}{n_{1}+n_{2}} =n1n=\dfrac{n_1}{n}



X2=n2n1+n2X_{2}=\dfrac{n_{2}}{n_{1}+n_{2}} =n2n=\dfrac{n_{2}}{n}



Now putting X_1,X_2\ in the above equation we get


GERT=AX1X2\dfrac{G^{E}}{RT}=AX_1X_2



GERT=A(n1n1+n2)(n2n1+n2)\dfrac{G^{E}}{RT}=A(\dfrac{n_{1}}{n_{1}+n_{2}})(\dfrac{n_{2}}{n_{1}+n_{2}}) =An1n2(n1+n2)2=A\dfrac{n_{1}n_{2}}{(n_1+n_2)^{2}}



now multiplying by n on both side of the , equation we get -


nGERT=(n1+n2)A(n1n1+n2)(n2n1+n2)n\dfrac{G^{E}}{RT}=(n_1+n_2)A(\dfrac{n_{1}}{n_{1}+n_{2}})(\dfrac{n_{2}}{n_{1}+n_{2}}) =An1n2n1+n2=\dfrac{An_1n_2}{n_1+n_2}


lnγ1=((nGE(RT))ni)T,P,n2ln\gamma_{1}=(\dfrac{\partial({\dfrac{nG^{E}}{(RT)}})}{\partial{n}_{i}})_T,_P,n_{2}



lnγi=((An1n2n1+n2)n1)T,P,NJln\gamma_{i}=(\dfrac{\partial({\dfrac{An_1n_2}{n_1+n_2}})}{\partial n_1})_T,_P,_{N_J}



lnγi=An2((n1n1+n2)n1)n2ln\gamma_{i}=An_2(\dfrac{\partial({\dfrac{n_1}{n_1+n_2}})}{\partial n_1})_{n_2}



lnγi=A(n22n1+n2)ln\gamma_{i}=A(\dfrac{n_2^{2}}{n_1+n_2})


lnγi=A(n22n)ln\gamma_{i}=A(\dfrac{n_2^{2}}{n})


lnγi=A(X22)ln\gamma_{i}=A(X_2^{2})


lnγi=A(X12)ln\gamma_{i}=A(X_1^{2})


so this is our equation .
















Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS