6.407 g of solid CO2 (44.01 g/mol) is put in an empty sealed 3.45 x 103 mL container at a temperature of 305.7-K. When all the solid CO2 becomes gas, what will be the pressure (in bar) in the container? ( R = 0.08206 L.atm/mol.K)
Given data in above
Mass of CO2 (w) = 6.407 g
Molar mass of CO2 (M)= 44.01 g/mol
Volume of container (V) = 3.45×103 mL
1 L = 1000 mL
Then , 3.45×103 mL = (1L÷1000 mL)×3.45×103 mL
= 3.45 L
Temperature (K) = 305.7 K
R ( Gas constant) = 0.08206 L .atm /mol. K
Calculation of pressure of the CO2 gas in container .
We first calculate moles (n) of CO2
"n =\\frac {w}{M}"
= "\\frac{6.407 g}{44.01 g}"
= 0.15 mol
Now, using ideal gas equation to calculate pressure of gas in the container.
PV= nRT
P = "\\frac{nRT}{V }"
"=\\frac{0.15 mol\u00d70.08206 L\/ atm \/mol\/K\u00d7305.7 K) }{3.45 L }"
= "\\frac{3.76 atm}{3.45}"
= 1.09 atm
P = 1.09 atm
We know that
1 atm = 1.013 bar
Then , "1.09 atm =\\frac{1.013 bar\u00d7 1.09 atm }{1atm}"
= 1.104 bar
Hence, the pressure of the CO2 gas in the container is 1.104 bar .
Comments
Leave a comment