Arrhenius equation:
K = Ae^{-\frac{E_a}{RT}}
K – rate constant
A – Arrhenius constant
Ea – activation energy
R – gas constant
T – temperature
"logk_1 = logA - \\frac{E_a}{2.303RT_1} \\\\\n\nlogk_2 = logA - \\frac{E_a}{2.303RT_2} \\\\\n\nlogk_2 \u2013 logk_1 = \\frac{E_a}{2.303 RT_1} - \\frac{E_a}{2.303 R T_2} \\\\\n\nlog\\frac{k_2}{k_1} = \\frac{E_a}{2.303 R}(\\frac{1}{T_1} - \\frac{1}{T_2}) \\\\\n\nln\\frac{k_2}{k_1} = \\frac{E_a}{R}(\\frac{1}{T_1} - \\frac{1}{T_2}) \\\\\n\nk_1 = 3.75 \\times 10^{-4} \\;s^{-1} \\\\\n\nk_2 = 7.50 \\times 10^{-4} \\;s^{-1} \\\\\n\nT_1 = 300 + 273 = 573 \\;K \\\\\n\nE_a = 101 \\times 10^3 \\;J \\\\\n\nln\\frac{7.50 \\times 10^{-4}}{3.75 \\times 10^{-4}} = \\frac{101 \\times 10^3}{8.314}(\\frac{1}{573} - \\frac{1}{T_2}) \\\\\n\n5.6798 \\times 10^{-5} = 174.52 \\times 10^{-5} - \\frac{1}{T_2} \\\\\n\n\\frac{1}{T_2} = 168.8402 \\times 10^{-5} \\\\\n\nT_2 = 592.27 \\; K \\\\\n\nT_2 = 592 - 273 = 319 \\;C"
Answer: 319 ºC
Comments
Leave a comment