"2ClF_3 + 2NH_3 \\to N_2 + 6H_F + Cl_2 +1196kJ"
"\u0394H_f\u00b0reaction=\u2211\u0394H_f(products)\u2212\u2211\u0394H_f(Reactants)"
ΔHf°["N_2"] = 0 kJ/mol(plain elements have 0kj/mol)
ΔHf°["6HF"] = 6(-271.1) kj/mol = -1626.6 kj/mol
ΔHf°["Cl_2"] = 0 kJ/mol(plain elements have 0kj/mol)
ΔHf°["2NH_3"] = 2(-46) kJ/mol = -92 kJ/mol
∆Hf°["2NH_3"]) = ?
Putting all the values into the equation above, we have;
-1196 = 0 - 1626.6 + 0 -(-92 + ∆Hf°["2NH_3"])
∆Hf°["2NH_3"] = 1196 - 1626.6 + 92
∆Hf°["2NH_3"]) = -338.6
∆Hf°["NH_3"]) = -338.6/2
∆Hf°["NH_3"]) = -169.3 kJ/mol
"\\therefore" The standard enthalpy of formation of chlorine trifluoride when 1196 kJ of heat is evolved is -169.3kJ/mol.
Comments
Leave a comment