p K a = − log ( K a ) log ( K a ) = − p K a K a = 1 0 − p K a K a = 1 0 − 4.89 K a = 1.288 × 1 0 − 5 pKa =-\log(Ka)\\
\log(Ka) = -pKa\\
Ka=10^{-pKa}\\
Ka= 10^{-4.89}\\
Ka = 1.288×10^{-5} p K a = − log ( K a ) log ( K a ) = − p K a K a = 1 0 − p K a K a = 1 0 − 4.89 K a = 1.288 × 1 0 − 5
\begin{alignedat}{4}
&HQ_{(aq)}\quad + &\quad H_2O_{(l)}\quad _\longrightarrow^\longleftarrow\quad &H_3O^+_{(aq)}\quad + &\quad Q^-_{(aq)}
\end{alignedat}
Initial Conc. : 0.020 M + — M = 0 M + 0 M Eqm: ( 0.020 − x ) M + — M = x M + x M \begin{aligned}
&\textsf{Initial Conc. : }0.020M +\ \text{---}M\ &= 0M + 0M\\
&\textsf{Eqm: }(0.020-x)M +\ \text{---}M\ &= xM + xM
\end{aligned} Initial Conc. : 0.020 M + — M Eqm: ( 0.020 − x ) M + — M = 0 M + 0 M = x M + x M
K a = p r o d u c t s r e a c t a n t s = [ H 3 O + ] [ Q − ] H Q \begin{aligned}
Ka = \dfrac{products}{reactants} = \dfrac{[H_3O^+][Q^-]}{HQ}
\end{aligned} K a = re a c t an t s p ro d u c t s = H Q [ H 3 O + ] [ Q − ]
1.288 × 1 0 − 5 = ( x ) ( x ) ( 0.020 − x ) \begin{aligned}
1.288 × 10^{-5} = \dfrac{(x)(x)}{(0.020-x)}
\end{aligned} 1.288 × 1 0 − 5 = ( 0.020 − x ) ( x ) ( x )
Since x < < 1,
0.020 - x ≈ \approx ≈ 0.020
1.288 × 1 0 − 5 = x 2 ( 0.020 ) \begin{aligned}
1.288 × 10^{-5} = \dfrac{x^2}{(0.020)}
\end{aligned} 1.288 × 1 0 − 5 = ( 0.020 ) x 2
x 2 = 1.288 × 1 0 − 5 × 0.020 \begin{aligned}
x^2 = 1.288 × 10^{-5} × 0.020
\end{aligned} x 2 = 1.288 × 1 0 − 5 × 0.020
x = 1.288 × 1 0 − 5 × 0.020 \begin{aligned}
x = \sqrt{1.288 × 10^{-5} × 0.020\ }
\end{aligned} x = 1.288 × 1 0 − 5 × 0.020
x = 1.605 × 1 0 − 3 M x = 1.605 × 10^{-3} M x = 1.605 × 1 0 − 3 M
[ H 3 O + ] = x = 1.605 × 1 0 − 3 M \begin{aligned}
[H_3O^+] = x = 1.605 × 10^{-3}M
\end{aligned} [ H 3 O + ] = x = 1.605 × 1 0 − 3 M
Comments