Question #141382
A 57.0 mL aliquot of a 1.50 M solution is diluted to a total volume of 248 mL. A 124 mL portion of that solution is diluted by adding 127 mL of water. What is the final concentration? Assume the volumes are additive.
1
Expert's answer
2020-10-30T06:45:46-0400

molar concentration (C) =1.50 MVolume (V) =57.0 mL=57×103 L=5.7×102 dm3number of moles (n) =V×C=5.7×102×1.50=0.0855 moles\begin{aligned} \textsf{molar concentration (C) }&= 1.50 \ M\\ \textsf{Volume (V) }&= 57.0 \ mL \\ &= 57 × 10^3 \ L\\ &= 5.7 × 10^{-2} \ dm^3\\ \\ \textsf{number of moles (n) } &= V × C\\ &= 5.7 × 10^{-2} × 1.50\\ &= 0.0855 \ moles \end{aligned}

After first dilution, V =248mL=0.248dm3\textsf{After first dilution, V }= 248mL = 0.248dm^3


new molar concentration =0.0855 moles0.248 dm3=0.345M\textsf{new molar concentration }= \dfrac{0.0855\ moles}{0.248\ dm^3} = 0.345M


A 124mL portion is taken away

V=124mL=0.124 dm3C=0.345Mnumber of moles (n) =C×V=0.345×0.124=0.0428 moles\begin{aligned} V &= 124mL = 0.124\ dm^3\\ C &= 0.345M\\ \therefore \textsf{number of moles (n) }&= C × V\\ &= 0.345 × 0.124 \\ &= 0.0428\ moles \end{aligned}

final volume (Vfinal)=124mL+127mL=251mL=0.251dm3\textsf{final volume } (V_{final}) = 124mL + 127mL = 251mL = 0.251dm^3



final concentration =nVfinal=0.0428 moles0.251 dm3=0.171M\begin{aligned} \therefore \textsf{final concentration } &= \dfrac{n}{V_{final}}\\ \\ &= \dfrac{0.0428\ moles}{0.251\ dm^3}\\ \\ &= 0.171M \end{aligned}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS