a). Rate1 = k[Br-][BrO3-][H+]2
Rate2 = k[2Br-][BrO3-][H+]2
"\\frac{Rate1}{Rate2} = \\frac{k[Br-][BrO3-][H+]^2}{k[2Br-][BrO3-][H+]^2}"
"\\frac{Rate1}{Rate2} = \\frac{k[Br-][BrO3-][H+]^2}{2k[Br-][BrO3-][H+]^2} = \\frac{1}{2}"
The rate will doubles.
b). Rate1 = k[Br-][BrO3-][H+]2
Rate2 = k[Br-][1/2BrO3-][H+]2
"\\frac{Rate1}{Rate2} = \\frac{k[Br-][BrO3-][H+]^2}{k[Br-][\\frac{1}{2}BrO3-][H+]^2}"
"\\frac{Rate1}{Rate2} = \\frac{k[Br-][BrO3-][H+]^2}{\\frac{1}{2}k[Br-][BrO3-][H+]^2} = 2"
The rate will halves.
c). Rate1 = k[Br-][BrO3-][H+]2
Rate2 = k[Br-][BrO3-][3H+]2
"\\frac{Rate1}{Rate2} = \\frac{k[Br-][BrO3-][H+]^2}{k[Br-][BrO3-][3H+]^2}"
"\\frac{Rate1}{Rate2} = \\frac{k[Br-][BrO3-][H+]^2}{9k[Br-][BrO3-][H+]^2} = \\frac{1}{9}"
The rate will become 9 times more.
Comments
Leave a comment