Avogadro's number is "6.022 \\times 10^{23}"
So the number of objects you want to count is "6.022 \\times 10^{23}"
If you count them at a rate of 5 objects per second, it'd take;
"\\dfrac{6.02 \\times 10^{23} \\textsf{ objects}}{5 \\textsf{ objects per second}}"
"=1.2046 \u00d7 10^{23}\\, s"
"1 \\textsf{ year} = 60 \\textsf{ seconds per minute} \u00d7 60 \\textsf{ minutes per hour} \u00d7 24 \\textsf{ hours per day} \u00d7 365 \\textsf{ days per year}\\\\\n=31536000 \\textsf{ seconds}\\\\\n=3.1536 \u00d7 10^7 \\textsf{ seconds}"
"\\therefore \\textsf{number of years} = \\dfrac{1.2046 \u00d7 10^{23}\\, s}{3.1536 \u00d7 10^7 \\textsf{ seconds per year}}"
"= 3.82 \u00d7 10^{15} \\textsf{ years}"
"= 382,000,000,000,000 \\textsf{ years}"
"= 382,000,000,000,000 \\textsf{ trillion years}"
Comments
Leave a comment