The equation of solubility is
BaSO 4 ( s ) ⇄ Ba 2 + ( a q ) + SO 4 2 − ( a q ) . \text{BaSO}_4(s)\rightleftarrows\text{Ba}^{2+}(aq)+\text{SO}_4^{2-}(aq). BaSO 4 ( s ) ⇄ Ba 2 + ( a q ) + SO 4 2 − ( a q ) . The expression for solubility product is
k = [ Ba 2 + ] [ SO 4 2 − ] = 1.08 ⋅ 1 0 − 10 k=[\text{Ba}^{2+}][\text{SO}_4^{2-}]=1.08\cdot10^{-10} k = [ Ba 2 + ] [ SO 4 2 − ] = 1.08 ⋅ 1 0 − 10 The equilibrium reactions and equilibrium constant equations:
H 2 SO 4 ( a q ) + H 2 O ( l ) ⇄ HSO 4 − ( a q ) + H 3 O + ( a q ) k a 1 = [ HSO 4 − ] [ H 3 O + ] [ H 2 SO 4 ] = 1 0 3 , HSO 4 − ( a q ) + H 2 O ( l ) ⇄ SO 4 2 − ( a q ) + H 3 O + ( a q ) k a 2 = [ SO 4 2 − ] [ H 3 O + ] [ H SO 4 − ] = 0.0102. \text{H}_2\text{SO}_4(aq)+\text{H}_2\text{O}(l)\rightleftarrows\text{HSO}_4^-(aq)+\text{H}_3\text{O}^+(aq)\\\space\\
k_{a1}=\frac{[\text{HSO}_4^-][\text{H}_3\text{O}^+]}{[\text{H}_2\text{SO}_4]}=10^3,\\\space\\
\text{HSO}_4^-(aq)+\text{H}_2\text{O}(l)\rightleftarrows\text{SO}_4^{2-}(aq)+\text{H}_3\text{O}^+(aq)\\\space\\
k_{a2}=\frac{[\text{SO}_4^{2-}][\text{H}_3\text{O}^+]}{[\text{H}\text{SO}_4^-]}=0.0102. H 2 SO 4 ( a q ) + H 2 O ( l ) ⇄ HSO 4 − ( a q ) + H 3 O + ( a q ) k a 1 = [ H 2 SO 4 ] [ HSO 4 − ] [ H 3 O + ] = 1 0 3 , HSO 4 − ( a q ) + H 2 O ( l ) ⇄ SO 4 2 − ( a q ) + H 3 O + ( a q ) k a 2 = [ H SO 4 − ] [ SO 4 2 − ] [ H 3 O + ] = 0.0102. Now we can substitute the last equation for k a2 in equation for k a1 :
[ H 2 SO 4 ] = [ SO 4 2 − ] [ H 3 O + ] 0.0102 ⋅ 1 0 3 [\text{H}_2\text{SO}_4]=\frac{[\text{SO}_4^{2-}][\text{H}_3\text{O}^+]}{0.0102\cdot10^3} [ H 2 SO 4 ] = 0.0102 ⋅ 1 0 3 [ SO 4 2 − ] [ H 3 O + ]
Assume that the solubility is
s = [ Ba 2 + ] = [ SO 4 2 − ] + [ H SO 4 − ] + [ H 2 SO 4 ] s=[\text{Ba}^{2+}]=[\text{SO}_4^{2-}]+[\text{H}\text{SO}_4^-]+[\text{H}_2\text{SO}_4] s = [ Ba 2 + ] = [ SO 4 2 − ] + [ H SO 4 − ] + [ H 2 SO 4 ] Substitute the previous equation and equations for k a2 and k a1 , numerical values, and obtain expression for s:
s = ( 1.08 ⋅ 1 0 − 10 ) ( 1 + 98.039 [ H 3 O ] + 0.98039 [ H 3 O ] 2 ) . s=\sqrt{(1.08\cdot10^{-10})(1+98.039[\text{H}_3\text{O}]+0.98039[\text{H}_3\text{O}]^2)}. s = ( 1.08 ⋅ 1 0 − 10 ) ( 1 + 98.039 [ H 3 O ] + 0.98039 [ H 3 O ] 2 ) . For [H3 O+ ] = 0.75 M the calculations give us
s = 8.975 ⋅ 1 0 − 5 M s=8.975\cdot10^{-5}\text{ M} s = 8.975 ⋅ 1 0 − 5 M
Comments