Answer to Question #136744 in General Chemistry for Ann

Question #136744
Follow the systematic procedure (9 steps, if applicable) to calculate for the
molar solubility of BaSO4 in a solution in which [H3O+] is 0.75 M.
1
Expert's answer
2020-10-12T13:32:17-0400

The equation of solubility is


"\\text{BaSO}_4(s)\\rightleftarrows\\text{Ba}^{2+}(aq)+\\text{SO}_4^{2-}(aq)."

The expression for solubility product is


"k=[\\text{Ba}^{2+}][\\text{SO}_4^{2-}]=1.08\\cdot10^{-10}"

The equilibrium reactions and equilibrium constant equations:


"\\text{H}_2\\text{SO}_4(aq)+\\text{H}_2\\text{O}(l)\\rightleftarrows\\text{HSO}_4^-(aq)+\\text{H}_3\\text{O}^+(aq)\\\\\\space\\\\\n\nk_{a1}=\\frac{[\\text{HSO}_4^-][\\text{H}_3\\text{O}^+]}{[\\text{H}_2\\text{SO}_4]}=10^3,\\\\\\space\\\\\n\n\\text{HSO}_4^-(aq)+\\text{H}_2\\text{O}(l)\\rightleftarrows\\text{SO}_4^{2-}(aq)+\\text{H}_3\\text{O}^+(aq)\\\\\\space\\\\\n\nk_{a2}=\\frac{[\\text{SO}_4^{2-}][\\text{H}_3\\text{O}^+]}{[\\text{H}\\text{SO}_4^-]}=0.0102."

Now we can substitute the last equation for ka2 in equation for ka1:

"[\\text{H}_2\\text{SO}_4]=\\frac{[\\text{SO}_4^{2-}][\\text{H}_3\\text{O}^+]}{0.0102\\cdot10^3}"

Assume that the solubility is


"s=[\\text{Ba}^{2+}]=[\\text{SO}_4^{2-}]+[\\text{H}\\text{SO}_4^-]+[\\text{H}_2\\text{SO}_4]"

Substitute the previous equation and equations for ka2 and ka1, numerical values, and obtain expression for s:

"s=\\sqrt{(1.08\\cdot10^{-10})(1+98.039[\\text{H}_3\\text{O}]+0.98039[\\text{H}_3\\text{O}]^2)}."

For [H3O+] = 0.75 M the calculations give us


"s=8.975\\cdot10^{-5}\\text{ M}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog