The equation of solubility is
"\\text{BaSO}_4(s)\\rightleftarrows\\text{Ba}^{2+}(aq)+\\text{SO}_4^{2-}(aq)."The expression for solubility product is
"k=[\\text{Ba}^{2+}][\\text{SO}_4^{2-}]=1.08\\cdot10^{-10}"The equilibrium reactions and equilibrium constant equations:
"\\text{H}_2\\text{SO}_4(aq)+\\text{H}_2\\text{O}(l)\\rightleftarrows\\text{HSO}_4^-(aq)+\\text{H}_3\\text{O}^+(aq)\\\\\\space\\\\\n\nk_{a1}=\\frac{[\\text{HSO}_4^-][\\text{H}_3\\text{O}^+]}{[\\text{H}_2\\text{SO}_4]}=10^3,\\\\\\space\\\\\n\n\\text{HSO}_4^-(aq)+\\text{H}_2\\text{O}(l)\\rightleftarrows\\text{SO}_4^{2-}(aq)+\\text{H}_3\\text{O}^+(aq)\\\\\\space\\\\\n\nk_{a2}=\\frac{[\\text{SO}_4^{2-}][\\text{H}_3\\text{O}^+]}{[\\text{H}\\text{SO}_4^-]}=0.0102."Now we can substitute the last equation for ka2 in equation for ka1:
"[\\text{H}_2\\text{SO}_4]=\\frac{[\\text{SO}_4^{2-}][\\text{H}_3\\text{O}^+]}{0.0102\\cdot10^3}"
Assume that the solubility is
"s=[\\text{Ba}^{2+}]=[\\text{SO}_4^{2-}]+[\\text{H}\\text{SO}_4^-]+[\\text{H}_2\\text{SO}_4]" Substitute the previous equation and equations for ka2 and ka1, numerical values, and obtain expression for s:
"s=\\sqrt{(1.08\\cdot10^{-10})(1+98.039[\\text{H}_3\\text{O}]+0.98039[\\text{H}_3\\text{O}]^2)}." For [H3O+] = 0.75 M the calculations give us
"s=8.975\\cdot10^{-5}\\text{ M}"
Comments
Leave a comment