The vapor pressure of benzene (C
6
H
6
) is 40.1 mmHg at 7.6°C. What is its vapor pressure at
60.6°C? The molar heat of vaporization of benzene is 31.0 kJ/mol
Clausius-Clapeyron equation:
"ln(\\frac{p_2}{p_1}) = (\\frac{\u2206H_{vap}}{R})\\times(\\frac{1}{T_1} \u2013 \\frac{1}{T_2})"
R — the gas constant (8.3145 J/mol K)
p1 – the vapor pressure of benzene at T1;
p2 – the vapor pressure of benzene at T2;
∆Hvap – the enthalpy of vaporization;
p1 = 40.1 mmHg
T1 = 7.6 °C + 273.15 = 280.75 K
T2 = 60.6 °C + 273.15 = 333.75 K
∆Hvap = 31000 J/mol
"ln(\\frac{p_2}{40.1}) = \\frac{31000}{8.3145}\\times(\\frac{1}{280.75} \u2013 \\frac{1}{333.75})"
"ln(\\frac{p_2}{40.1}) = 3728.42\u00d7(0.00356 \u2013 0.00299)"
"ln(\\frac{p_2}{40.1}) = 3728.42\u00d70.00057"
"ln(\\frac{p_2}{40.1}) = 2.12"
"\\frac{p_2}{40.1} = e^{2.12} = 8.33"
"p_2 = 40.1\\times8.33 = 334.03 mmHg"
Answer: 334.03 mmHg
Comments
Leave a comment