a)
we solve by the formula
ρ = n A V c N a \rho=\frac{nA}{VcNa} ρ = V c N a n A
p=4.8g / cm3
A=105 g/mol
Na=6.02x1023.
Vc=a^3
a = 4 r 2 a=4r\sqrt{2} a = 4 r 2
0.55A=0.055 10^-7cm3
1.5A=0.15 10^-7cm3
a = 4 × 0.055 × 1 0 − 7 × 2 = 0.31 × 1 0 − 7 a=4\times0.055\times10^{-7}\times\sqrt{2}=0.31\times10^{-7} a = 4 × 0.055 × 1 0 − 7 × 2 = 0.31 × 1 0 − 7
V c = ( 0.31 × 1 0 − 7 ) 3 = 0.03 × 1 0 − 21 Vc=(0.31\times10^{-7})^3=0.03\times10^{-21} V c = ( 0.31 × 1 0 − 7 ) 3 = 0.03 × 1 0 − 21
a = 4 × 0.15 × 1 0 − 7 × 2 = 0.31 × 1 0 − 7 = 0.84 × 1 0 − 7 a=4\times0.15\times10^{-7}\times\sqrt{2}=0.31\times10^{-7}=0.84\times10^{-7} a = 4 × 0.15 × 1 0 − 7 × 2 = 0.31 × 1 0 − 7 = 0.84 × 1 0 − 7
V c = ( 0.84 × 1 0 − 7 ) 3 = 0.59 × 1 0 − 21 Vc=(0.84\times10^{-7})^3=0.59\times10^{-21} V c = ( 0.84 × 1 0 − 7 ) 3 = 0.59 × 1 0 − 21
V c = 0.59 × 1 0 − 21 + 0.03 × 1 0 − 21 = 0.62 × 1 0 − 21 Vc=0.59\times10^{-21}+0.03\times10^{-21}=0.62\times10^{-21} V c = 0.59 × 1 0 − 21 + 0.03 × 1 0 − 21 = 0.62 × 1 0 − 21
4.8 = n × 105 0.62 × 1 0 − 21 × 6.02 × 1023 4.8=\frac{n\times105}{0.62\times10^{-21}\times6.02\times10{23}} 4.8 = 0.62 × 1 0 − 21 × 6.02 × 10 23 n × 105
n=17
b)
find the mass
γ = m V \gamma=\frac{m}{V} γ = V m
m = γ × V = 4.8 × m=\gamma\times V=4.8\times m = γ × V = 4.8 × 0.62\times10^{-21}=2.976\times10^{-21}
n = m × M N a = 2.976 × 1 0 − 21 × 105 6.02 × 1 0 23 = 51.9 × 1 0 − 44 n=\frac{m\times M}{Na}=\frac{2.976\times10^{-21}\times105}{6.02\times10^{23}}=51.9\times10^{-44} n = N a m × M = 6.02 × 1 0 23 2.976 × 1 0 − 21 × 105 = 51.9 × 1 0 − 44
Comments