The molar solubility of the compound, s, represents the number of moles of the substance that will dissolve in aqueous solution at a particular temperature.
For AgI s=[Ag+] and Ksp=[Ag+][I-]=s*s=s2, then s= "\\sqrt{Ksp}" ="\\sqrt{8.3\\cdot10^{-17} }" ="9.3\\cdot10^{-9}"
for PbI2 s=[Pb2+] and Ksp=[Pb2+][I-]2=s*(2s)2=4s3, then s="\\sqrt[3]{Ksp\\over4}=\\sqrt[3]{7.1\\cdot10^{-9}\\over{4}}=1.2\\cdot10^{-3}" ,
for BiI3 s=[Bi3+] and Ksp=[Bi3+][I-]3=s*(3s)3=27s4, then s="\\sqrt[4]{Ksp\\over27}=\\sqrt[4]{8.1\\cdot10^{-19}\\over{27}}=1.3\\cdot10^{-5}" .
From these considerations we get a list in order of decreasing molar solubility in water:
PbI2"\\rightarrow" BiI3"\\rightarrow" AgI
For 0.10 M NaI solution [I-]=0.1mol*L-1. So, we get:
For AgI s=[Ag+] and Ksp=[Ag+][I-]= s*0.1=0.1s, then s=10"\\cdot" Ksp=8.3⋅10−16
for PbI2 s=[Pb2+] and Ksp=[Pb2+][I-]2=s*(0.1)2=0.01s, then s=100"\\cdot" Ksp=7.1⋅10−9=7.1⋅10−7
for BiI3 s=[Bi3+] and Ksp=[Bi3+][I-]3=s*(0.1)3=0.001s, then s=1000"\\cdot" Ksp=8.1⋅10−16
From these considerations we get a list in order of decreasing molar solubility in 0.10 M NaI solution:
PbI2→AgI→BiI3
Answer:
a. a list in order of decreasing molar solubility in water: PbI2→BiI3→AgI
b. a list in order of decreasing molar solubility in 0.10 M NaI solution: PbI2→AgI→BiI3
Comments
Leave a comment